时间: 2022-04-15 14:00:38 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 96次
设 r为圆的半径,n为圆心角度数,L为圆心角对应弧长
因为
L=(r/180)*π*n
所以
r=180π*n*L
扩展资料:
弧长各种公式
圆锥的表面积=圆锥的侧面积+底面圆的面积
其中:圆锥体的侧面积=πRL
圆锥体的全面积=πRl+πR²
π为圆周率≈3.14
R为圆锥体底面圆的半径
L为圆锥的母线长 我们把连接圆锥顶点和底面圆周上任意一点的线段叫作圆锥的母线
(注意:不是圆锥的高)是展开扇形的边长
n圆锥圆心角=r/l*360 360r/l
侧面展开图的圆心角求法:n=360r/R=πRr或2πr=nπr/180 n=360r/R 。如果题目中有切线,经常用的辅助线是连接圆心和切点的半径,得到直角,再用相关知识解题。
我是一名木工,在装修中经常用到画弧形的造型,请教下有什么好办法画弧形,或者有简单实用的公式也行
弧长200cm弧高15cm。有做木工的老师给个看得懂的公式,不要粘贴复制的。
弦长一半的平方除以弧高加上弧高最后除以二。
若已知弓形的高h和长(弦长)AB求弓形的圆弧半径R角度θ和弧长l
按勾股定理有下式,(R-h)²+(AB/2)²=R²,
经变换得,R=AB²/8h+h/2
sin(θ/2)=(AB/2)/R,按反三角函数得到θ/2,(用科学计算器计算)和θ,
弧长l=2Rπ×θ/360
例,h=15,AB=150,则R=AB²/8h+h/2=187.5+7.5=195
sin(θ/2)=(AB/2)/R=75/195=5/13,θ/2=22.6200°,θ=45 .24°,
弧长l=2Rπ×θ/360=153.97
例如:
已知弧长C;半径R,求弧高H,弧所对的圆心角为A.
A=C/R弧度=(C/R)*180/PI度
H=R-R*COS(A/2)
扩展资料真正从理论上严密推导圆的周长必须依赖近代的分析数学,包括微积分的使用才行。
推导圆周长最简洁的办法是用积分。
y = r * Sin t
t∈[0, 2π]
于是圆周长就是
结果自然就是C = 2π * r
(注:三角函数一般的定义是依赖于圆的周长或面积的,为了避免逻辑上的循环论证,可以把三角函数按收敛的幂级数或积分来定义而不依赖于几何,此时圆周率就不是由圆定义的常数,而是由三角函数周期性得到的常数)
弦长一半的平方除以弧高加上弧高最后除以二。
若已知弓形的高h和长(弦长)AB求弓形的圆弧半径R角度θ和弧长l
按勾股定理有下式,(R-h)²+(AB/2)²=R²,
经变换得,R=AB²/8h+h/2
sin(θ/2)=(AB/2)/R,按反三角函数得到θ/2,(用科学计算器计算)和θ,
弧长l=2Rπ×θ/360
例,h=15,AB=150,则R=AB²/8h+h/2=187.5+7.5=195
sin(θ/2)=(AB/2)/R=75/195=5/13,θ/2=22.6200°,θ=45 .24°,
弧长l=2Rπ×θ/360=153.97
扩展资料:
在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πr,所以n°圆心角所对的弧长为l=n°πr÷180°(l=n°x2πr/360°)
举例说明:半径为1cm,45°的圆心角所对的弧长为
l=nπr/180
=45×π×1/180
=45×3.14×1/180
约等于0.785
扇形的弧长第二公式为:
扇形的弧长,事实上就是圆的其中一段边长,扇形的角度是360度的几分之一,那么扇形的弧长就是这个圆的周长的几分之一,所以我们可以得出:
扇形的弧长=2πr×角度/360
其中,2πr是圆的周长,角度为该扇形的角度值。
给你举个例子:
已知弦长L=2.4米,弧高H=0.25米,求半径R?
R^2=(R-H)^2+(L/2)^2
R^2=R^2-2*R*H+H^2+L^2/4
2*R*H=H^2+L^2/4
R=H/2+L:^2/(8*H)
=0.25/2+2.4:^2/(8*0.25)
=3.005米
设 r为圆的半径,n为圆心角度数,L为圆心角对应弧长
因为
L=(r/180)*π*n
所以
r=180π*n*L
扩展资料:
弧长各种公式
圆锥的表面积=圆锥的侧面积+底面圆的面积
其中:圆锥体的侧面积=πRL
圆锥体的全面积=πRl+πR²
π为圆周率≈3.14
R为圆锥体底面圆的半径
L为圆锥的母线长 我们把连接圆锥顶点和底面圆周上任意一点的线段叫作圆锥的母线
(注意:不是圆锥的高)是展开扇形的边长
n圆锥圆心角=r/l*360 360r/l
侧面展开图的圆心角求法:n=360r/R=πRr或2πr=nπr/180 n=360r/R 。如果题目中有切线,经常用的辅助线是连接圆心和切点的半径,得到直角,再用相关知识解题。
全站搜索