欢迎访问喜蛋文章网
你的位置:首页 > 经典文章 > 文章正文

基于可证伪、可重复、可拓展的原则,中国历史疆域的判定标准是怎样的

时间: 2023-06-28 02:00:27 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 107次

基于可证伪、可重复、可拓展的原则,中国历史疆域的判定标准是怎样的

科学的三点原则

什么是心理学?心理学是不是科学?斯坦诺维奇看来“心理学是用科学方法研究人类行为的学科"。因为心理学研究领域宽泛,看起来不像是一个学科,但实际上心理学是一个学科的原因是其科学性。

那什么是科学呢?在斯坦诺维奇看来,科学满足三个条件:

接下来看每一条的具体含义:
1) 系统的实证主义

实证主义是指“基于观察的实践”。可以简单的理解为以(客观)事实为基础,区分观点、结论和事实。但是非结构化、零散的观察并不能导致科学知识的产生,科学是通过理论揭示事实背后的科学依据,所以需要结构化、系统化。

2) 以公共性、可检验的知识为研究对象

可以简单概括为可重复、可证伪。如果该知识只针对少数样本有效,难以重复,那这就不叫科学知识,也很难拓展到其他领域。

3)研究实证可解问题,并产生可检验理论

认知心理学家史蒂芬 · 平克(Stephen Pinker)讨论了”未知“可以划分为”问题“或”玄迷“。问题是可以探究答案的、而玄迷我们难以用科学的方法获取答案,比如“性本善还是本恶?”、”是否存在上帝“这类问题,很难用科学的方法获得答案。

科学意味着可以通过科学的方法获取问题的答案,并且答案可以研究,遵从“理论——预测——检验——修正”,“提出问题——提出假设——验证假设——获取结论”这样的顺序。

以前我不理解为什么很多人说中国人的理性思维能力、批判性思维能力很差,现在用科学的三个标准去衡量一下。国人思考问题容易诉诸情感,不讲究证据和事实。砸日本车就是爱国,不买日货就是爱国。一些微信公众号文章充满着事实和证据、也有逻辑,但是错误在一开始就确定了一个结论,然后围绕着结论寻找证据支持。八九十年代的气功大师、如今依然流行的包治百病的各种大师,或许真有那么回事,但是他们的方法是不可重复、不可证伪的。

那如何才能够快速提高理性呢?开智集团创造人阳志平老师提到了一个方法:多个信息源、交差验证。当有多个信息源,比如一个地方听到了一个消息,放在另外一个地方研究,就知道真假了。所以理性思维提高首要的是改变信息获取结构。

《这才是心理学(第10版)》(2021) 第一章 斯坦诺维奇 著 窦东徽/ 刘肖岑 / 人民邮电出版社

科学划界的主要观点及评价

对于科学共同体而言,科学划界问题可以把科学与非科学和伪科学区别开来,既有理论价值,也有实践意义。要划界,当然得有划界标准;不用说,划界标准首先与不同论者所持的哲学立场有关。

例如,实证论借助经验的可回答性划界,理性论借助符合科学方法的准则划界。西方学者贾丁(N·Jardine)则列举出对划分边界的两个视角——本质主义的视角(波普尔、默顿、库恩都选择本质主义的解决办法)和建构主义的视角:“本质主义为确定唯一的、必然的和不变的质的可能性和分析的需要辩解,这些质把科学与其他文化实践和产物分开,并说明它的独特成就(关于外部世界的有效的和可信赖的主张)。建构主义争辩说,没有划界原理不变地起作用,取而代之的是,把科学与其他知识生产活动分开是在与境上偶然的和利益驱动的实用主义的完成结果。这种完成结果有选择地凭靠不一致的和模糊的属性。”

由于哲学立场的差异,也形成不同的战略性的划界标准。巴茨认为,有四种哲学战略,它们作为区分科学与非科学的尝试具有某些优点。其一是康德战略,即可靠的认识形式:确定可靠的认识规范,用当时最好的科学例示这些规范,接着把伪科学分类为对这些规范的偏离(形而上学和其他超验知识的主张)。其二是雷舍尔战略,即预言和控制。对科学来说,两个目标占据着对科学来说基本上是唯一的突出位置:预言的明确性和控制环境的成功。科学在竞争中赢得胜利,不是因为它的优越内容,而是它在预言和控制中实用主义的成功,其他说明框架无法与之匹敌。其三是格林鲍姆战略,即认知的可解释性。格林鲍姆坚持“以自然科学为特色的那类认知可解释性”,这本质上把理论的可接受性与基于归纳和演绎逻辑原则的严格的和详尽的批判联系起来。其四是亨普尔战略,即健全假设的标志。亨普尔列举科学假设向往的东西(desiderata),提出它们是加于科学理论选择的不精确的限制。不用说,划界问题直接与科学的定义或科学性(scientificity)的内涵有关:有了准确的、明晰的定义和内涵,就比较容易在科学与非科学、伪科学之间作出区分。

尽管反划界论者对划界论者的划界标准或方案——特别针对证实标准和证伪方案——逐一进行反驳,但是后者不甘示弱,依然我行我素,不断推出新的划界标准。这些标准基本上是以科学、尤其是以科学理论的本质特征为标志的,这些特征却是非科学或伪科学不具备的或不明显的,它们实际上属于科学性的范畴。

例如,罗森把客观性视为最重要的划界标准。巴茨看重“真”这一标志:自然科学文本在可容许的诠释范围的尺度上比伪科学的文本更接近告诉真的文本。李克特把抽象性和可检验性看作科学体系的特点。霍奇森视理论的普遍性和经验的可重复性为不可或缺的标准。利普斯则立足于充足理由律划界:在任何命题中,主语必须包含谓语的充分根据;命题必须在经验中和在思维规律中具有充分的根据;命题必须在其他命题中具有根据(即它们必须从普遍的命题中可以演绎出来)。充足理由律划定科学知识和非科学知识之间的界限。由于科学和科学理论的特征在很大程度上是由科学方法决定的,而其他传统文化部门不用或罕用科学方法,因此方法作为划界标准很早就被提到议事日程。

由于单一的或个别的划界标准难以或根本不可能把科学与非科学、伪科学区分开来,有些划界论者便针对科学知识体系——也涉及作为研究活动和社会建制的科学——提出综合性的划界标准。沃尔珀特指出,对于有资格作为科学的对象,它至少需要满足若干标准:它处理的现象应该能够被独立的观察者确认;它的观念应该是自我一致的;它提出的说明应该能够与其他科学分支联系起来;少数定律或机制应该能够说明形形色色表观上更复杂的现象;理想的话,它应该是定量的,它的理论能够用数学表达。威尔逊言之凿凿:“科学不同于伪科学的显著特征首先就在于科学知识具有可重复性:同一现象可以重复研究,最好是由不同的研究者来进行,通过新颖的分析和实验,这一研究得到证实或否定。其次,经济性:科学家试图将信息抽象为既简单又美的形式,这种结合称作雅致,这样就可以通过最少的努力获取最多的信息。第三,可测量性:如果某种东西可以用人们普遍接受的尺度予以精确的测量,那么对这种东西所作的概括就会很清晰。第四,启发性:最好的科学可以激发进一步的发现,通常是向着未预见的新方向;而新的知识又再次检验导致作出这一发现的最初原理。第五,也是最后,契合性:在对不同现象所作的诸多解释中,只有那些可以相互联系并被证明彼此一致的解释可以存在下去。”

有些综合性的划界标准不仅把整个科学或科学的三大内涵包蕴在内,甚至囊括科学的社会和文化与境。撒加德认为,划界的判据需要一个包含三个因素的矩阵:理论、共同体和历史情境。他得出的结论是:“作为科学或非科学的划界对象不是观念或命题,甚或不是理论,而是领域(fields)。一个领域应该被理解为包容理论、它们的应用和该领域实践者在内的历史实体。因此,它是一种社会的以及认识的概念。”

泰勒则从修辞视角看科学划界:划界是具有重要的社会的、认识论的和政治的后果之实践的、修辞的实现。这突显下述事实的理论意义和实践意义:把科学理解为相互渗透的组分和实践的复杂“生态系统”。他提出作为实践内容的划界观,该实践是通过科学家在不断发展的科学活动中在修辞上议妥的。至于有些反划界论者和当代知识社会学的激进派、文化相对主义者把问题推向极端,认为根本不存在科学划界的认识论和方法论标准,把科学划界视为在特定的社会和文化背景中社会团体的纯粹约定,则未免失之偏颇,实在不足为训。

(作者系中国科学院大学教授)
科学划界
一、科学划界的含义
1、含义
所谓科学划界就是寻求科学与其它知识的区别及其标准,回答¡°什么是科学¡±这一问题的科学哲学领域。科学划界问题是科学哲学的基本问题。
思考与讨论:科学的本性是什么?
2、历史上的主流观点及困难
从亚里士多德到18世纪末的哲学家、科学家都把科学知识的确实可靠性作为科学区别于非科学与伪科学的本质属性。
19世纪随着认识论中可错论观点的出现和胜利,科学的确实可靠性标准便弱化为科学方法的确实可靠性标准,但稍后便被证明同样是站不住脚。
二、科学划界的基本标准
1、可检验性标准
必须包含有关于自然界的信息,从而能够被观察和实验证据所检验。
必须能够经受住检验。
3、超量内容标准
必须比旧理论包含更多的信息,具有更强的解释力
4、逻辑性标准
概念必须清晰,逻辑必须自洽
5、相容性标准
必须能够与当下主流的科学观点相容,进而能够为科学共同体所接受。
以上第1、5标准在用来判定一个理论是否是科学时都不能被绝对化,因为观察与实验渗透理论,并非完全客观;而过于强调相容性标准,又有可能压制重大科学创新,阻碍科学发展。
三、科学划界的意义
关于科学划界的努力是一项无止境的事业。虽然科学哲学至今仍无法给出一个清晰、一致、可操作的标准,但科学的基本形象是清楚的,作为科学划界标准的必要条件也是明确的。
科学划界是一项有意义的工作,有利于明确科学的知识特性,更有效地揭露伪科学甚至反科学,维护科学的尊严和社会形象。

数学!!!!!!!!!!!!!!!!!!!!!

什么是数学
1、 数学就是解题

数学家科利亚说过,什么是数学?数学就是解题,就是把不熟悉的题型向熟悉的题型转化。作为数学教师,解题能力是十分重要的。不少学校在挑选教师时,都要出几道题让考察对象做,以此作为录用教师的一个重要标准。作为学生,解题能力的高低,直接影响考试的成绩。

不少教师十分重视题型教学,把各章节的习题分为若干种题型,要求学生练好各种题型的解题套路。更有甚者,当讲完一道典型例题后,要求学生要能背诵记忆。当学生向教师请教怎样才能学好数学时,“多做题”成了经典的回答。多做题并没有错,但是盲目地、过多地重复,除了做题就不知道如何学数学的人,必然会忽略数学的其它教育功能,认识不清数学的本质。

其实多数数学题都是实际问题的反应,当实际问题转化成纯数学问题后,没有较强的解题能力会无能为力。科利亚所说的“解题”,当然也应包括解决实际问题,如果能引导学生应用已学的数学知识去解决实际问题,在做数学和用数学中不但可以提高学习的兴趣,也会在数学活动的过程中学到不少知识,提高多种能力。

2、 数学是训练思维的体操

数学是由数学、字母、符号、图形构成的一座迷宫。不少人爱玩迷宫游戏,逆向思维是寻求走出迷宫正确道路的诀窍,一旦顺利走出迷宫,成功的愉悦会使你兴奋不已,你会向新的、更复杂的迷宫挑战,这也是数学的魅力,思维在不知不觉中得到了训练。可以这样说:数学是教人颖睿的一门学科。

但是,在走迷宫中不明方法,经常碰壁失败,也就会对这种游戏生厌了。我们在数学中重视思维的训练,思想和方法的潜移默化比知识的传授更为重要。我们要让学生经常有成功感,在快乐中研究数学。是体操就要做,是迷宫就要走。如果不动手动脑就达不到训练思维的目的。

3、 数学是一种语言

数学由于它自身的特点,严密的系统和逻辑推理,运算法则和运算性质的合理性,使它成为了一种宇宙间的通用语言,不需要翻译,只要用数学式的恒等变形,用数学的符号语言和图形语言即可传达我们的思想,达到交流的目的。

数学是精密科学和现代科技的语言,精确到何种程度,多元变量之间有什么关系,如果没有数学语言,很难想象科学家们怎样把自己的思想向别人表述。

因此数学语言的培养是教学中的一个重要内容,经常要让学生“说数学”,数学修养好的人,不仅思维能力和思想品质上有所表现,就是讲话也是简明扼要,准确严密。语言只是思维的一种载体,思维训练是根本,但是数学语言的表达能力和转换能力的培养也是十分重要的。

4、 数学是哲学

数学中充满了哲学,许多数学家(比如毕达哥拉斯)也是哲学家。或者说,许多哲学观点在数学中找到了实证,得到了体现。许多哲学家也研究数学,比如恩格斯,他写的《自然辩证法》就是一部杰出的数学论著。

对于世界观还未完全形成的中学生来说,学习数学,他将受到隐藏在数字和图形里的哲学思想的潜移默化。作为数学教师,应该学习了解一些哲学观点和术语,在教学中注意揭示一些辩证唯物观点,不仅可以起到画龙点睛的作用,也对学生进行了思想教育。这种教育不是空洞的说教,而有实实在在的科学例证,效果是永恒的。不少教师对这种水到渠成的机会视而不见,放弃了对学生教育的契机,也放弃了数学教育的育人性。

5、 数学是文化

数学对象并非物质世界中的真实存在,而是人类抽象思维的产物,而文化,广义地说,是指人类在社会历史实践过程中所创造的物质财富和精神财富的总和,因此,在所说的意义上,数学就是一种文化。

和很多数学家是哲学家一样,有很多数学家也是文学家。例如著名的童话《爱丽丝漫游仙境》就出自英国牛津大学的一位数学家之手。俄国著名女数学家柯瓦利夫斯卡娅不仅在数学上有很大贡献,而且写出了一部被俄国文艺评论家认为“无论在形式上还是在思想内容上都可以与俄国文坛上最佳的作品相媲美”的小说《拉也夫斯卡娅姐妹》。

数学中的许多问题的发现和解决,都有深厚的文化背景,精彩的故事后面隐含着深邃的哲理。数学有着数千年的文化积淀,芸集了大众和数学家智慧的结晶。在我们学习数学知识时,不得不由衷地赞美人类的聪明才智。

数学教学不仅仅是传授知识,更重要的是要向学生传递这些数学文化,有了这种认识,数学情景题、数学作文题也就会应运而生了。数学不只是指导着自然科学,与文学和美学也是水乳交融的。

6、 数学是艺术

数学中存在着美。数百年来流传的“只有美的艺术,没有美的科学”的观念,使许多人认为数学不过是一种有用的工具,是“科学大门的钥匙”,仅此而已。数学中存在的美就是数学美,它是纯客观的,哪里有数学哪里就有数学美存在。数学的简洁美、和谐美、对称美、奇异美就是数学美的内容。

数学美往往展现在那些冷冰冰的数字和奇特的符号语言之中,这种冷峻的美一点不张扬,有的人视而不见,甚至感到枯燥乏味。对于有鉴赏能力的人来说,对数学美的感悟可以震撼他的灵魂。一旦领悟了数学美,数学再也不是枯燥无味的了,它能愉悦人的身心,陶冶人的情趣。

当我们画出一个美的图形,构造出一个美的方程,制作出一个美的几何体时,难道数学不是一门艺术吗?

如果教师在教学中能引导学生走进数学美的大花园,教给他们赏析数学美的能力,他们一定会在数学的花园里留连忘返的。

数学是一门科学,它的研究对象是存在于客观世界又超越于物质存在的数量关系,几何体的大小、形状、位置关系。它高度的抽象性和概括性决定了它的学习规律,应该是重视基础,循序渐进,在实践中学习,在应用中内化。
数学的特点是它所探求的不是某种转瞬即逝的东西,也不是服务于某种具体物质需要的问题,而是宇宙中永恒不变的规律;它不断追求最简单的、最深层次的、超出人类感官所及的宇宙的根本;它不仅研究宇宙的规律,而且也研究它自己,在发挥自己力量的同时,又研究自己的局限性。数学深刻地影响人类的精神生活和物质生活,任何文明时代,数学素质都是人类素质中重要的组成部分。由数学的本质决定了数学教育在树德育人中起着不可或缺的作用,数学思维的培养和训练是广才广能的基础和发源地。
什么是数学?这是任何一个数学教育工作者都应认真思考的问题。只有对数学的本质特征有比较清晰的认识,才能在数学教育研究中把握正确的方向.

1.数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系”的认识,又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的能动创造。

2.从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显著的例子是非负整数。欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,著名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。

3.对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。

4.事实上,上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G. Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过数学的形式来学习数学的内容,从而学会相应的(应用数学的)活动。这大概就是弗赖登塔尔所说的“数学是在内容和形式的互相影响之中的一种发现和组织的活动”的含义。菲茨拜因(Efraim Fischbein)说,“数学家的理想是要获得严谨的、条理清楚的、具有逻辑结构的知识实体,这一事实并不排除必须将数学看成是个创造性过程:数学本质上是人类活动,数学是由人类发明的,”数学活动由形式的、算法的与直觉的等三个基本成分之间的相互作用构成。库朗和罗宾逊(Courani Robbins)也说,“数学是人类意志的表达,反映积极的意愿、深思熟虑的推理,以及精美而完善的愿望,它的基本要素是逻辑与直觉、分析与构造、一般性与个别性。虽然不同的传统可能强调不同的侧面,但只有这些对立势力的相互作用,以及为它们的综合所作的奋斗,才构成数学科学的生命、效用与高度的价值。”

5.另外,对数学还有一些更加广义的理解。如,有人认为,“数学是一种文化体系”,“数学是一种语言”,数学活动是社会性的,它是在人类文明发展的历史进程中,人类认识自然、适应和改造自然、完善自我与社会的一种高度智慧的结晶。数学对人类的思维方式产生了关键性的影响.也有人认为,数学是一门艺术,“和把数学看作一门学科相比,我几乎更喜欢把它看作一门艺术,因为数学家在理性世界指导下(虽然不是控制下)所表现出的经久的创造性活动,具有和艺术家的,例如画家的活动相似之处,这是真实的而并非臆造的。数学家的严格的演绎推理在这里可以比作专门注技巧。就像一个人若不具备一定量的技能就不能成为画家一样,不具备一定水平的精确推理能力就不能成为数学家,这些品质是最基本的,……,它与其它一些要微妙得多的品质共同构成一个优秀的艺术家或优秀的数学家的素质,其中最主要的一条在两种情况下都是想象力。”“数学是推理的音乐,”而“音乐是形象的数学”.这是从数学研究的过程和数学家应具备的品质来论述数学的本质,还有人把数学看成是一种对待事物的基本态度和方法,一种精神和观念,即数学精神、数学观念和态度。尼斯(Mogens Niss)等在《社会中的数学》一文中认为,数学是一门学科,“在认识论的意义上它是一门科学,目标是要建立、描述和理解某些领域中的对象、现象、关系和机制等。如果这个领域是由我们通常认为的数学实体所构成的,数学就扮演着纯粹科学的角色。在这种情况下,数学以内在的自我发展和自我理解为目标,独立于外部世界,…,另一方面,如果所考虑的领域存在于数学之外,…,数学就起着用科学的作用…·,数学的这两个侧面之间的差异并非数学内容本身的问题,而是人们所关注的焦点不同。无论是纯粹的还是应用的,作为科学的数学有助于产生知识和洞察力。数学也是一个工具、产品以及过程构成的系统,它有助于我们作出与掌握数学以外的实践领域有关的决定和行动…·,数学是美学的一个领域,能为许多醉心其中的人们提供对美感、愉悦和激动的体验…·,作为一门学科,数学的传播和发展都要求它能被新一代的人们所掌握。数学的学习不会同时而自动地进行,需要靠人来传授,所以,数学也是我们社会的教育体系中的一个教学科目.”

从上所述可以看出,人们是从数学内部(又从数学的内容、表现形式及研究过程等几个角度)。数学与社会的关系、数学与其它学科的关系、数学与人的发展的关系等几个方面来讨论数学的性质的。它们都从一个侧面反映了数学的本质特征,为我们全面认识数学的性质提供了一个视角。

6.基于对数学本质特征的上述认识,人们也从不同侧面讨论了数学的具体特点。比较普遍的观点是,数学有抽象性、精确性和应用的广泛性等特点,其中最本质的特点是抽象性。A,。亚历山大洛夫说,“甚至对数学只有很肤浅的知识就能容易地觉察到数学的这些特点:第一是它的抽象性,第二是精确性,或者更好他说是逻辑的严格性以及它的结论的确定性,最后是它的应用的极端广泛、性,”「5」王粹坤说,“数学的特点是:内容的抽象性、应用的广泛性、推理的严谨性和结论的明确必”这种看法主要从数学的内容、表现形式和数学的作用等方面来理解数学的特点,是数学特点的一个方面。另外,从数学研究的过程方面、数学与其它学科之间的关系方面来看,数学还有形象性、似真性、拟经验性。“可证伪性”的特点。对数学特点的认识也是有时代特征的,例如,关于数学的严谨性,在各个数学历史发展时期有不同的标准,从欧氏几何到罗巴切夫斯基几何再到希尔伯特公理体系,关于严谨性的评价标准有很大差异,尤其是哥德尔提出并证明了“不完备性定理…以后,人们发现即使是公理化这一曾经被极度推崇的严谨的科学方法也是有缺陷的。因此,数学的严谨性是在数学发展历史中表现出来的,具有相对性。关于数学的似真性,波利亚在他的《数学与猜想》中指出,“数学被人看作是一门论证科学。然而这仅仅是它的一个方面,以最后确定的形式出现的定型的数学,好像是仅含证明的纯论证性的材料,然而,数学的创造过程是与任何其它知识的创造过程一样的,在证明一个数学定理之前,你先得猜测这个定理的内容,在你完全作出详细证明之前,你先得推测证明的思路,你先得把观察到的结果加以综合然后加以类比.你得一次又一次地进行尝试。数学家的创造性工作成果是论证推理,即证明;但是这个证明是通过合情推理,通过猜想而发现的。只要数学的学习过程稍能反映出数学的发明过程的话,那么就应当让猜测、合情推理占有适当的位置。”正是从这个角度,我们说数学的确定性是相对的,有条件的,对数学的形象性、似真性、拟经验性。“可证伪性”特点的强调,实际上是突出了数学研究中观察、实验、分析。比较、类比、归纳、联想等思维过程的重要性。

综上所述,对数学本质特征的认识是发展的。变化的,用历史的、发展的观点来看待数学的本质特征,恩格斯的“纯数学的对象是现实世界的空间形式和数量关系”的论断并不过时,对初等数学来说就更是如此,当然,对“空间形式和数量关系”的内涵,我们应当作适当的拓展和深化。顺便指出,对数学本质特征的讨论中,采取现象与本质并重、过程与结果并重、形式与内容并重的观点:,对数学教学具有重要的指导意义。
名称来源

数学(mathematics;希腊语:μαθηματικά)这一词在西方源自于古希腊语的μάθημα(máthēma),其有学习、学问、科学,以及另外还有个较狭意且技术性的意义-“数学研究”,即使在其语源内。其形容词μαθηματικός(mathēmatikós),意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。(拉丁文:Mathemetica)原意是数和数数的技术。
我国古代把数学叫算术,又称算学,最后才改为数学。

数学史

基础数学的知识与运用是个人与团体生活中不可或缺的一块。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。
今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,之后会发现许多应用。
创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。

[编辑本段]数学的本质
数学的本质是什么?为什么数学可以运用在所有的其它科目上?
数学是研究事物数量和形状规律的科目。
如果要深入的研究其本质及其扩展问题,就必须引入【全集然文明】专有名词了。
其实数学的本质是:一门研究【储空】的科目。
自然万物都有其存储的空间,这种现象称之为【储空】。
要判断一个事物是否为“储空”其实很简单:只要能够套入“在××里”的××就是“储空”(包括具体和抽象)。于是大家将会发现,所有的事物都可以套入其中,也就是说:自然万物都只是不同的“储空”而已。
于是人们也发现:【代数】就是研究【储空量】的科目;【几何】就是研究【储空形状】的科目。而既然自然万物都只是不同的储空而已,那么数学当然也就可以通用于所有的科目之中了!

1.更多的证据

因为一个除真空外的储空都是有【储隔】(储空隔膜)的,于是人们在其它科目中使用数字就必须用【单位】来区分各种不同的储空,如:个、头、条、小时、牛、焦耳、欧姆、安培等等,可以说离开了单位,数字几乎毫无意义。
并且各种名词的【定义】也是相关储空的储隔,就是区别于其他事物的地方。

2.新数学等式和计算模型

异储空计算模型
异储空等式【异储空等式】比如:1个人 异等于 5个苹果 ,就是说:一个人可以得到5个苹果,或一个人和5个苹果相联系(任何联系都可以);异等号就是等号=下面加个o(储空标志);这样就可以简单的描述很多日常生活中碰到的计算。而且您还可以通过右图的【异储空计算模型】(最简单的模型),来计算一些事物。

3.其他几何领域

当然有,其实一直都有两个巨大的几何领域被人们长期的忽视,那就是【文字几何】与【功能几何】。
(1)文字几何:当一些有特定含义的文字按照特殊的组合和形状排列下来就会出现各种特殊的功能和特性。就像我们最常见的“化学元素周期表”、“文字图表”、“数学计算模型”等等。
(2)功能几何:各种形状都是拥有各种不同的功能的!如球形可以做大容量的容纳物质,交叉有利于物质传播等等。所以我们应该仔细研究和探讨各种形状的各种特殊功能!
使用全集然文明逻辑:如果自然万物有共同的本质和规律,那么它们必然可以用来推导各个科目的本质和规律,并推理出该科目内的新内容。于是我们发现了数学就是研究“储空”的一个科目,并推理出了各种新领域。
注:等式、四则运算、解方程式的本质都可以用【储空】内部规律推理出来
[编辑本段]数学研究的各领域
数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。
数量
数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。数论还包括两个被广为探讨的未解问题:孪生素数猜想及哥德巴赫猜想。
当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:艾礼富数,它允许无限集合之间的大小可以做有意义的比较。
结构
许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。
空间
空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及数,且包含有著名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演著核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。在其许多分支中,拓扑学可能是二十世纪数学中有着最大进展的领域,并包含有存在久远的庞加莱猜想及有争议的四色定理,其只被电脑证明,而从来没有由人力来验证过。
基础与哲学
为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,就连被誉为“博大精深,富于创举”的数学家Pioncare也把集合论比作有趣的“病理情形”,甚至他的老师Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”.对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.”他还指出:“数学的本质在于它的自由性,不必受传统观念束缚。”这种争辩持续了十年之久。Cantor由于经常处于精神压抑之中,致使他1884年患了精神分裂症,最后死于精神病院。
然而,历史终究公平地评价了他的创造,集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。
数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。
恩格斯说:“数学是研究现定世界的数量关系与空间形式的科学。”
[编辑本段]数学的分类
离散数学
模糊数学

数学的五大分支

1.经典数学
2.近代数学
3.计算机数学
4.随机数学
5.经济数学

数学分支

1.算术
2.初等代数
3.高等代数
4. 数论
5.欧式几何
6.非欧式几何
7.解析几何
8.微分几何
9.代数几何
10.射影几何学
11.几何拓扑学
12.拓扑学
13.分形几何
14.微积分学
15. 实变函数论
16.概率和统计学
17.复变函数论
18.泛函分析
19.偏微分方程
20.常微分方程
21.数理逻辑
22.模糊数学
23.运筹学
24.计算数学
25.突变理论
26.数学物理学

广义的数学分类

从纵向划分:
1.初等数学和古代数学:这是指17世纪以前的数学。主要是古希腊时期建立的欧几里得几何学,古代中国、古印度和古巴比伦时期建立的算术,欧洲文艺复兴时期发展起来的代数方程等。
2.变量数学:是指17--19世纪初建立与发展起来的数学。从17世纪上半叶开始的变量数学时期,可以分为两个阶段:17世纪的创建阶段(英雄时代)与18世纪的发展阶段(创造时代)。
3.近代数学:是指19世纪的数学。近代数学时期的19世纪是数学的全面发展与成熟阶段,数学的面貌发生了深刻的变化,数学的绝大部分分支在这一时期都已经形成,整个数学呈现现出全面繁荣的景象。
4.现代数学:是指20世纪的数学。1900年德国著名数学家希尔伯特(D. Hilbert)在世界数学家大会上发表了一个著名演讲,提出了23个预测和知道今后数学发展的数学问题(见下),拉开了20世纪现代数学的序幕。
注:希尔伯特的23个问题——
在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。
希尔伯特的23个问题分属四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题属于代数和几何问题;第19到第23问题属于数学分析。 现在只列出一张清单:
(1)康托的连续统基数问题。
(2)算术公理系统的无矛盾性。
(3)只根据合同公理证明等底等高的两个四面体有相等之体积是不可能的。
(4)两点间以直线为距离最短线问题。
(5)拓扑学成为李群的条件(拓扑群)。
(6)对数学起重要作用的物理学的公理化。
(7)某些数的超越性的证明。
(8)素数分布问题,尤其对黎曼猜想、哥德巴赫猜想和孪生素共问题。
(9)一般互反律在任意数域中的证明。
(10)能否通过有限步骤来判定不定方程是否存在有理整数解?
(11)一般代数数域内的二次型论。
(12)类域的构成问题。
(13)一般七次代数方程以二变量连续函数之组合求解的不可能性。
(14)某些完备函数系的有限的证明。
(15)建立代数几何学的基础。
(16)代数曲线和曲面的拓扑研究。
(17)半正定形式的平方和表示。
(18)用全等多面体构造空间。
(19)正则变分问题的解是否总是解析函数?
(20)研究一般边值问题。
(21)具有给定奇点和单值群的Fuchs类的线性微分方程解的存在性证明。
(22)用自守函数将解析函数单值化。
(23)发展变分学方法的研究。
从横向划分:
1.基础数学(Pure Mathematics)。又称为理论数学或纯粹数学,是数学的核心部分,包含代数、几何、分析三大分支,分别研究数、形和数形关系。
2.应用数学(Applied mathematics)。简单地说,也即数学的应用。
3 .计算数学(Computstion mathematics)。研究诸如计算方法(数值分析)、数理逻辑、符号数学、计算复杂性、程序设计等方面的问题。该学科与计算机密切相关。
4.概率统计(Probability and mathematical statistics)。分概率论与数理统计两大块。
5.运筹学与控制论(Op-erations research and csntrol)。运筹学是利用数学方法,在建立模型的基础上,解决有关人力、物资、金钱等的复杂系统的运行、组织、管理等方面所出现的问题的一门学科。
[编辑本段]符号、语言与严谨
在现代的符号中,简单的表示式可能描绘出复杂的概念。此一图像即是由一简单方程所产生的。
我们现今所使用的大部份数学符号都是到了16世纪后才被发明出来的。在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。
数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思。亦困恼着初学者,如开放和域等字在数学里有着特别的意思。数学术语亦包括如同胚及可积性等专有名词。但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。
严谨是数学证明中很重要且基本的一部份。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。当大量的计量难以被验证时,其证明亦很难说是有效地严谨。
[编辑本段]数学的发展史

世界数学发展史

数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语μαθηματικ??(mathematikós)意思是“学问的基础”,源于μ?θημα(máthema)(“科学,知识,学问”)。
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。
更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。
从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”
[编辑本段]国外数学名家

高斯

数 学 天 才 —— 高 斯
高斯是德国数学家、物理学家和天文学家。
高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出。7岁那年,高斯第一次上学了。
在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。说完高斯也算完并把写有答案的小石板交了上去,当时只有他写的答案是正确的。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。
高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称。

牛顿

牛顿是英国物理学家和数学家。
在学校里,牛顿是个古怪的孩子,就喜欢自己设计、自己动手,做凤筝、日规、滴漏之类器物。他对周围的一切充满好奇,但并不显得特别聪明。
后来,家里叫他停学,到他母亲的农场上去帮忙。在他母亲的农场上,看到一个苹果落在地上,便开始捉摸,这种将苹果往下拉的力会不会也在控制着月球。由此牛顿推导出物体的下落速度改变率与重力的大小成正比,而重力大小与距地心距离的平方成反比。后来牛顿的棱镜实验也使他一举成名。
牛顿有两句名言是大家所熟知的。他在一封信中写道:“如果我比别人看得远些,那是因为我站在巨人们的肩上。”据说他还讲过:“我不知道世人对我怎么看;但在我自己看来就好像只是一个在海滨嬉戏的孩子,不时地为比别人找到一块光滑的卵石或一只更美丽的贝壳而感到高兴,而我面前的浩瀚的真理海洋,却还完全是个谜。

中国古代数学发展史

数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。
中国古代数学的萌芽
原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。
西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。
商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。
公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。
春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。
战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。
而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。
墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。
名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。
数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
数学是研究事物数量和形状规律的科目。 研究数与形的学科
假设乙为一,甲数比乙多9分之一,就是比一多9分之一,所以用1+9分之一+1又9分之一且9分之十
一根铁丝是单位一,所以用1—8分之5=8分之三
一批图书是单位1,1+3分之一=3分之四,再用3分之四除以1=3分之四。

请解释一下“可证伪性”的具体含义,为什么说科学都具有“可证伪性”

请解释一下“可证伪性”的具体含义,为什么说科学都具有“可证伪性”。。例如长黑色羽毛的鸭子称为黑鸭,而可以根据这个命题证明一只白色羽毛的鸭子不是“黑鸭”。这个命题具有可证伪性吗?如果在客观条件下确实可行的理论,可以判定它具有可证伪性吗?
1、可证伪性也叫可否证性,即否证一个理论的可能性。其基本观点是一个理论的科学性标准并不取决于它的可证实性,而是它的可否证性,不能为任何可想象的事件所否证的理论(如上帝存在等命题)是非科学的。波普尔同时指出,由于一个理论的信息量、精确性和普遍性均与理论的可否证度成正比,因而可否证度就成了衡量科学理论的标准。
2、你举得的这个例子本身有误。长黑色羽毛的鸭子是黑鸭,这是一个同义反复的语句,用于逻辑判断则没有任何价值。若是改成“鸭子都长有黑色羽毛”,则多少算是一个可以检验命题。
3、不存在所谓的“客观条件下确实可行的理论”,这只是一个空想出来的概念。因为当一个理论被提出后,人们需要用实践对其做出检验,但这将会是一个无止境的检验。某一理论在现实中被验证一次、两次、十次、一百次,都不能证明这一理论就永远是对的;而只要有一天能出现一个反例,该理论就将被推翻,这便是可证伪性。因此在理解波普尔的否证理论时,一定要结合其经验主义的基础才会不误解其本意。
所有科学命题都要有可证伪性,不可能为伪的理论不能成为科学理论。这是著名科学哲学家卡尔·波普尔的著作《猜想与反驳》中提出的概念。
在科学与哲学中,可证伪性被用来表示由经验得来的表述所具有的一种属性,即:这些结论必须容许逻辑上的反例的存在。作为对比的则包括形式上的或数学的表述,如重言式(由于定义的原因它们总是真的),数学公理和定理——这些表述不容许逻辑上反例的存在。一些哲学家和科学家,如卡尔·波普尔,宣称:一切从经验得来的假说、命题和理论都不是科学的,除非它们容许反例存在的可能。 一个主张“可证伪”并不意味着这个主张是“假”的。如果一个主张是可证伪的,则至少在理论上存在一种观测的方法(即使实际上没有进行这项观测也无妨),来表明这个主张不符合重言式的标准(即这个主张不总是真的)。对某种描述进行观测的逻辑前提是它描述的事物是存在的。 举例来说,“所有的天鹅都是白色的”这个主张可以被“一个黑色天鹅”的观测证伪,虽然这个观测并不一定会发生。一个可证伪的命题必须定义某些被禁止的情形。例如,在这个例子中,“所有的天鹅都是白色的”这个主张禁止了“黑色天鹅”的存在。由于理论上可能存在“观测到黑色天鹅”这个反例,“所有的天鹅都是白色的”这个主张是可证伪的。 可证伪性是一种逻辑属性。因此,如果要表明一个物理定律是可证伪的,我们并不需要表明违反这个物理定律是真实可行的(这样会使其不再是物理定律);然而,我们只需要表明这个物理定律的例外情况在逻辑上是可能的。进一步说,逻辑上的可证伪性是一种对由经验得来的主张的规范,而不是用来说明反例存在的证据。此外,作为事物逻辑属性的可证伪性与某种主观的修辞、心理表述无关。
最后要说明的是,可证伪性是由经验得来的主张的必要属性——却不是充分属性。这意味着一个主张需要更多的属性使其成为经验上有意义的。一行字可能不能成为一项主张(有可能只是随机的字而不具有意义),而且即使这一行字是一项主张,也不表示其一定可以成为一个科学理论。
文章标题: 基于可证伪、可重复、可拓展的原则,中国历史疆域的判定标准是怎样的
文章地址: http://www.xdqxjxc.cn/jingdianwenzhang/173736.html
文章标签:疆域  是怎样  判定  中国历史  拓展
Top