欢迎访问喜蛋文章网
你的位置:首页 > 经典文章 > 文章正文

时空的弯曲又何以使其中的物体产生"莫名的"加速度

时间: 2023-04-03 04:59:22 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 102次

时空的弯曲又何以使其中的物体产生"莫名的"加速度

爱因斯坦相对论是什么?

详细地介绍一下广义相对论和狭义相对论哦~~~广义和狭义有什么区别?
相对论

相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。

狭义相对论,是只限于讨论惯性系情况的相对论。牛顿时空观认为空间是平直的、各向同性的和各点同性的的三维空间——绝对空间,时间是独立于空间的单独一维(因而也是绝对的),即绝对时空观。狭义相对论认为空间和时间并不相互独立,而是一个统一的四维时空整体,并不存在绝对的空间和时间。在狭义相对论中,整个时空仍然是平直的、各向同性的和各点同性的,这是一种对应于“全局惯性系”的理想状况。狭义相对论将真空中光速为常数作为基本假设,结合狭义相对性原理和上述时空的性质可以推出洛仑兹变换。

广义相对论是爱因斯坦在1915年发表的理论。爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上(目前实验证实,在10 − 12的精确度范围内,仍没有看到引力质量与惯性质量的差别)。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身故有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走。

倒相对论:相对论的提出,同样受到很多的指责,有很多人认为它是错误的,并大大阻碍了社会的发展。然而这种观点并不被主流科学界所接受。

爱因斯坦和他的相对论

除了量子理论以外,1905年刚刚得到博士学位的爱因斯坦发表的一篇题为《论动体的电动力学》的文章引发了二十世纪物理学的另一场革命。文章研究的是物体的运动对光学现象的影响,这是当时经典物理学面对的另一个难题。

十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速C传播的电磁波的存在。到十九世纪末,实验完全证实了麦克斯韦理论。电磁波是什么?它的传播速度C是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种特殊物质叫做“以太”,电磁波是以太振动的传播。但人们发现,这是一个充满矛盾的理论。如果认为地球是在一个静止的以太中运动,那么根据速度迭加原理,在地球上沿不同方向传播的光的速度必定不一样,但是实验否定了这个结论。如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符。

1887年迈克尔逊和莫雷利用光的干涉现象进行了非常精确的测量,仍没有发现地球有相对于以太的任何运动。对此,洛仑兹(H.A.Lorentz)提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。爱因斯坦从完全不同的思路研究了这一问题。他指出,只要摒弃牛顿所确立的绝对空间和绝对时间的概念,一切困难都可以解决,根本不需要什么以太。

爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础。第一个叫做相对性原理。它是说:如果坐标系K'相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K′。第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度。

从表面上看,光速不变似乎与相对性原理冲突。因为按照经典力学速度的合成法则,对于K′和K这两个做相对匀速运动的坐标系,光速应该不一样。爱因斯坦认为,要承认这两个原理没有抵触,就必须重新分析时间与空间的物理概念。

经典力学中的速度合成法则实际依赖于如下两个假设:1.两个事件发生的时间间隔与测量时间所用的钟的运动状态没有关系;2.两点的空间距离与测量距离所用的尺的运动状态无关。爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃。这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性。在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等。距离也有了相对性。

如果设K坐标系中一个事件可以用三个空间坐标x、y、z和一个时间坐标t来确定,而K′坐标系中同一个事件由x′、y′、z′和t′来确定,则爱因斯坦发现,x′、y′、z′和t′可以通过一组方程由x、y、z和t求出来。两个坐标系的相对运动速度和光速c是方程的唯一参数。这个方程最早是由洛仑兹得到的,所以称为洛仑兹变换。

利用洛仑兹变换很容易证明,钟会因为运动而变慢,尺在运动时要比静止时短,速度的相加满足一个新的法则。相对性原理也被表达为一个明确的数学条件,即在洛仑兹变换下,带撇的空时变量x'、y'、z'、t'将代替空时变量x、y、z、t,而任何自然定律的表达式仍取与原来完全相同的形式。人们称之为普遍的自然定律对于洛仑兹变换是协变的。这一点在我们探索普遍的自然定律方面具有非常重要的作用。

此外,在经典物理学中,时间是绝对的。它一直充当着不同于三个空间坐标的独立角色。爱因斯坦的相对论把时间与空间联系起来了。认为物理的现实世界是各个事件组成的,每个事件由四个数来描述。这四个数就是它的时空坐标t和x、y、z,它们构成一个四维的连续空间,通常称为闵可夫斯基四维空间。在相对论中,用四维方式来考察物理的现实世界是很自然的。狭义相对论导致的另一个重要的结果是关于质量和能量的关系。在爱因斯坦以前,物理学家一直认为质量和能量是截然不同的,它们是分别守恒的量。爱因斯坦发现,在相对论中质量与能量密不可分,两个守恒定律结合为一个定律。他给出了一个著名的质量-能量公式:E=mc2,其中c为光速。于是质量可以看作是它的能量的量度。计算表明,微小的质量蕴涵着巨大的能量。这个奇妙的公式为人类获取巨大的能量,制造原子弹和氢弹以及利用原子能发电等奠定了理论基础。

对爱因斯坦引入的这些全新的概念,大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔奖金授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了光电效应的定律。”对于相对论只字未提。

爱因斯坦于1915年进一步建立起了广义相对论。狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了。他引入了一个等效原理,认为我们不可能区分引力效应和非匀速运动,即非匀速运动和引力是等效的。他进而分析了光线在靠近一个行量附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要。可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线。基于这些讨论,爱因斯坦导出了一组方程,它们可以确定由物质的存在而产生的弯曲空间几何。利用这个方程,爱因斯坦计算了水星近日点的位移量,与实验观测值完全一致,解决了一个长期解释不了的困难问题,这使爱因斯坦激动不已。他在写给埃伦菲斯特的信中这样写道:“……方程给出了近日点的正确数值,你可以想象我有多高兴!有好几天,我高兴得不知怎样才好。”

1915年11月25日,爱因斯坦把题为“万有引力方程”的论文提交给了柏林的普鲁士科学院,完整地论述了广义相对论。在这篇文章中他不仅解释了天文观测中发现的水星轨道近日点移动之谜,而且还预言:星光经过太阳会发生偏折,偏折角度相当于牛顿理论所预言的数值的两倍。第一次世界大战延误了对这个数值的测定。1919年5月25日的日全食给人们提供了大战后的第一次观测机会。英国人爱丁顿奔赴非洲西海岸的普林西比岛,进行了这一观测。11月6日,汤姆逊在英国皇家学会和皇家天文学会联席会议上郑重宣布:得到证实的是爱因斯坦而不是牛顿所预言的结果。他称赞道“这是人类思想史上最伟大的成就之一。爱因斯坦发现的不是一个小岛,而是整整一个科学思想的新大陆。”泰晤士报以“科学上的革命”为题对这一重大新闻做了报道。消息传遍全世界,爱因斯坦成了举世瞩目的名人。广义相对论也被提高到神话般受人敬仰的宝座。

从那时以来,人们对广义相对论的实验检验表现出越来越浓厚的兴趣。但由于太阳系内部引力场非常弱,引力效应本身就非常小,广义相对论的理论结果与牛顿引力理论的偏离很小,观测非常困难。七十年代以来,由于射电天文学的进展,观测的距离远远突破了太阳系,观测的精度随之大大提高。特别是1974年9月由麻省理工学院的泰勒和他的学生惠斯勒,用305米口径的大型射电望远镜进行观测时,发现了脉冲双星,它是一个中子星和它的伴星在引力作用下相互绕行,周期只有0.323天,它的表面的引力比太阳表面强十万倍,是地球上甚至太阳系内不可能获得的检验引力理论的实验室。经过长达十余年的观测,他们得到了与广义相对论的预言符合得非常好的结果。由于这一重大贡献,泰勒和惠斯勒获得了1993年诺贝尔物理奖。

相对论

十九世纪后期,由于光的波动理论的确立,科学家相信一种叫“以太”的连续介质充满了宇宙空间,就象空气中的声波一样,光线和电磁信号是“以太”中的波。然而,与空间完全充满“以太”的思想相悖的结果不久就出现了:根据“以太”理论应得出,光线传播速度相对于“以太”应是一个定值,因此,如果你沿与光线传播相同的方向行进,你所测量到的光速应比你在静止时测量到的光速低;反之,如果你沿与光线传播相反的方向行进,你所测量到的光速应比你在静止时测量到的光速高。但是,一系列实验都没有找到造成光速差别的证据。

在这些实验当中,阿尔波特·迈克尔逊和埃迪沃德·莫里1887年在美国俄亥俄州克里夫兰的凯斯研究所所完成的测量,是最准确细致的。他们对比两束成直角的光线的传播速度,由于围着自转轴的转动和绕太阳的公转,根据推理,地球应穿行在“以太”中,因此上述成直角的两束光线应因地球的运动而测量到不同的速度,爱尔兰物理学家乔治·费兹哥立德和荷兰物理学家亨卓克·洛仑兹,最早认为相对于“以太”运动的物体在运动方向的尺寸会收缩,而相对于“以太”运动的时钟会变慢。并且洛仑兹提出了著名的洛仑兹变换。而对“以太”,费兹哥立德和洛仑兹当时都认为是一种真实存在的物质。而法国数学家庞加莱怀疑这一点,并预见全新的力学会出现。

马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的。绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是又能够变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理提出了洛仑兹变换。创立了狭义相对论。

爱因斯坦死后的几十年里,其形象不断地被拔高。他写的书几十年长销不衰,他的话经常被流行文化引征据用,他的肖像被印在T恤衫上和咖啡杯上,可以说商业用途极为广泛。被奉为圣人,其形象却从不咄咄逼人,爱因斯坦自始至终的形象都是:一个温和文雅的天才。他有多少天分,同样就有多少慈善。成就和人格的完美结合,使得许多人视爱因斯坦为圣人。但实际上,当我们越关注爱因斯坦外在的高大形象,反而越不能了解那个真正的爱因斯坦和他所做过的一切。

幸亏有了一个坚持不懈的出版计划,20世纪最伟大的科学家其真正面貌才得以最终成型。这就是《爱因斯坦全集》。这套将公布爱因斯坦约14000篇原始文件的全集共有25卷,现在已经出版到第8卷。全套文集不仅包括了爱因斯坦所有科学文献以供研究者追随这位科学家的思想历程,而且还公布了其大量的书信来往,展现了其真实的为人。在那里面,你可以深深地感受到爱因斯坦的智慧和魅力还有令人尊敬的勇气和社会正义感。但另一方面,文集也说明了爱因斯坦远不是一个圣人,他也尖酸刻薄,也反叛,甚至可以说是有点放荡。

当你走进美国自然博物馆阴暗的展览大厅,耳边响起英国著名作曲家霍尔斯特在1918年创作的《ThePlanets(行星组曲)》时,那种极不和谐、有点刺耳的音调仿佛在提醒游客:爱因斯坦的内心世界就是这样矛盾、这么不和谐的。

一直以来,流传着许多关于爱因斯坦具有超自然能力的各种传说,他的姐姐说他的后脑勺又大又有棱角。

以前曾流传过许多关于爱因斯坦具有超自然能力的各种传说。(最为典型的一个故事,称爱因斯坦小时候说出的第一句话竟然是抱怨牛奶太热了,目瞪口呆的父母问他为什么以前一直不开口说话。谁料这个小天才回答:“因为,以前的一切都没有什么问题呀!”)

根据爱因斯坦的的姐姐玛亚在一部从未出版过的自传中称,爱因斯坦的智力发展很慢,而且到了很晚才开始会说话。玛亚说:“当爱因斯坦刚出生的时候,母亲看见他那又巨大又有棱角的后脑勺时都快吓坏了。”

“爱因斯坦的大脑的确异于常人,大脑海马区左侧的神经细胞明显比右侧的大,并且分布很规则”(加州大学Zaidel博士)

美国加州大学的Zaidel博士称,爱因斯坦的大脑与普通人相比,存在着“显著的差异”。Zaidel研究了爱因斯坦的两个大脑组织切片(生物实验中经常使用的研究方法),这两个切片含有大脑海马区的神经细胞,它们负责处理语言与想象的工作。通过与10个普通人的大脑切片对比,Zaidel博士发现爱因斯坦大脑组织存在显著的“优势”:爱因斯坦大脑海马区左侧的神经细胞明显比右侧的大,并且分布很规则;而普通人该组织区的神经细胞看上去很小,而且表现得“非常不规则”。

但是Zaidel指出,爱因斯坦大脑组织的特性“是天生的,还是后天发展的结果”,目前尚不能定论。

“我没有任何特殊的才能。我拥有的只是极其强烈的好奇心。”“我的智力发展很迟缓,我一直到了完全长大以后,才开始对时空问题感到疑惑的。”(爱因斯坦)

那么,爱因斯坦究竟是一个怎样的人,他如何“看到”别人“看不到”的东西?爱因斯坦把其成功归结于他的起步慢。他有一次写道:“一个正常的成年人从来不会停止思考关于时间和空间的问题。但是我的智力发展却很迟缓,我一直到了完全长大以后,才开始对时空问题感到疑惑。”

在1915年,爱因斯坦曾对一名校友说过:“一个人不应该追求那些容易得到的东西,所以我们还是继续努力吧。”

哈佛大学的物理兼科学史专家格雷得·和顿是爱因斯坦1955年去世后第一个获许翻看档案的学者。如今76岁的和顿说当年他翻看爱因斯坦的档案时,被其独一无二的光辉所完全折服。“爱因斯坦的思考方式完全不像教科书上所说的那样,先做实验,然后得出理论,最后检验结论,他而是几乎完全靠‘想’进行创造,以其极度跳跃的思维来完成他的‘实验’。爱因斯坦的智慧是超乎常人的。”

幼年、青年、老年时期的爱因斯坦

相对论改变了世界

爱因斯坦一生大约发表过300篇科学论文,但归纳其最重要的理论有:

相对论

1905年发表了狭义相对论。这个理论指出在宇宙中唯一不变的是光线在真空中的速度,其它任何事物——速度、长度、质量和经过的时间,都随观察者的参考系(特定观察)而变化。

时空

爱因斯坦发表他的相对论之二百年前,英国物理学家艾萨克·牛顿(1643~1727)提出时间和空间都是绝对的,空间和时间是完全分开的。然而,在相对论数学中,时间和三维空间——长、宽和高,一起构成一个四维空间框架,叫做时空关联集。

质量和能量

爱因斯坦从他的狭义相对论中推导出等式E=MC2(这里E是能量,M是质量,C是恒定的光速),他用这个等式解释了质量和能量是等价的。现在认为,质量和能量是同一种物质的不同形式,称为质能。例如,如果一个物体的能量减少了一定量E,则它的质量也减少等于MC2的量,然而,质能不会消失,只不过以另一种形式被释放,它叫辐射能量。

广义相对论

1915年发表了广义相对论,解释了引力作用和加速度作用没有差别的原因。他还解释了引力是如何和时空弯曲联系起来的,利用数学,爱因斯坦指出物体使周围空间、时间弯曲,在物体具有很大的相对质量(例如一颗恒星)时,这种弯曲可使从它旁边经过的任何其它事物,即使是光线,改变路径。

虫洞

理论上,虫洞是一个黑洞,它的质量非常大,把时空弯曲吸进了它自身之中,它的口开向宇宙的另一个空间及时间,或者也许完全进入另一个宇宙空间。也许能够利用虫洞建立一个时间旅行机器,但许多科学家们指出这个机器不可能重返到它自身被创建的时间之前。

他还是一个发明匠

我们常常把爱因斯坦想象成一个总在开小差的天才,他的魂儿常常被时空勾了去。但其实,爱因斯坦也是一个动手能力很强的发明家。他的父母开了一家电力厂,并常常鼓励小爱因斯坦以后当一个工程师。

他曾经和别人一起合作发明了一套不需拆卸的冷冻系统,后来在一战期间,又曾为德国空军设计了一款机翼。

爱因斯坦曾在瑞士伯尔尼专利局当过7年评估员。尽管他在工作的时候常常走神发白日梦(在用脑子做实验),但爱因斯坦对自己的工作还是颇为胜任的,并在1906年获得了一次升职的机会。此外,他在那时就拥有了好几个属于自己的专利,包括一个在20世纪20年代和别人合作发明的一套不需拆卸的冷冻系统。在一战期间,爱因斯坦又为德国空军设计了一款机翼,并进行到了实验阶段。可惜当时那个负责测试的飞行员向上级抱怨说飞机装上了爱因斯坦所设计的机翼后看上去就像是一只“怀孕的鸭子”,计划最终流产。

他与FBI“秘密交锋”

尽管爱因斯坦在私生活中很冷漠,但他在公众场合中却表现出很强的社交能力,他甚至是一个天生适合当名人的人。爱因斯坦拍照时非常上镜,而且拥有一副很有磁性的嗓音。在一部关于爱因斯坦的记录片中有这么一个镜头:爱因斯坦被一群记者簇拥着而从容应付。有一个记者问他:“爱因斯坦教授,请问您为自己成为一个美国人而感到高兴吗?”爱因斯坦讽刺他:“既然你站在这里这样问我,那我的回答是‘当然了,我感到非常荣幸’”。爱因斯坦在1930年12月11日的旅行日记中有一段话就更加直接地奚落记者。“一群记者在长岛登上了我们的船,问了我一些极为愚蠢的问题,当我用一些毫不值钱的滥调回答他们的时候,他们却像如获至宝般欢喜而归。”

他在科学界与政界都树下了不少敌人,他支持犹太人在中东建国,但又很早就警告说应当关注当地阿拉伯人的利益。

尽管爱因斯坦在感情上极其喜恶分明,但最典型的体现在他参与的社会和政治事端。爱因斯坦曾经不知疲倦地帮助那些纳粹德国的难民逃到美国,他还致力于在耶路撒冷建立希伯来大学以作为犹太人科学家的避难所。爱因斯坦支持犹太人在巴勒斯坦重建犹太人的王国,但他同时早在1955年就警告说:“我们的建国政策中最关键的一环是要给予一直在中东地区生活的阿拉伯人们同样平等的权利。”作为一个忠实的社会主义者,爱因斯坦对资本主义极不信任,他相信,建立“世界政府”是有效控制核武器发展的唯一途径,并只有这样才能从根本上避免战争的发生。

他是一个激进主义者,在德国,他上了纳粹党的黑名单,逃到美国后,FBI花费了22年的时间一直监视他,不仅诬陷他是间谍,还想方设法要把他驱逐出境

爱因斯坦是人权运动最早期的倡导者之一,这是爱因斯坦作为一个激进主义者最鲜为人知的一面。爱因斯坦不仅利用自己的声望极力反对私刑拷问,他还参加了(美国)全国有色人种协进会(NAACP)的工作。

因此,爱因斯坦这种对抗当局的行为使他在科学界和政界中树下了不少敌人。他的名字最早在1922年就被写进了纳粹党的黑名单,还有许多颇有声望的德国物理学家也公开称爱因斯坦的研究为“犹太人的物理学”。这种愚昧的攻击甚至在爱因斯坦与1933年逃到美国普林斯顿大学后也没有停止。

逃到美国后,其激进行为同样让FBI感到非常不安,美国联邦调查局前局长胡佛和爱因斯坦之间由此进行了一场长达20多年的“秘密战争”。在胡佛的指示下,美国联邦调查局一共搜集了1800多页的有关爱因斯坦的档案,而他们的目的就是要把爱因斯坦驱逐出美国。胡佛的结论是:爱因斯坦实际上是俄国派到柏林的一个间谍。不过这种荒谬的说法竟然奏效了,爱因斯坦最终被阻挡在曼哈顿原子弹计划之外。这就是为什么爱因斯坦建议罗斯福研制核弹却从未参与该工程的原因。

“婚姻是披着文明外衣的奴隶制”

毋庸讳言,爱因斯坦对待女性的看法,确实受到过德国哲学家叔本华思想的深刻影响。他从未把爱情看得是高于一切。他在离婚前就有过外遇,并且在第二次结婚后,也有过越轨行为。他认为,从本质上说,婚姻都是愚蠢的,自己也多次谈到了他的不适合于家庭生活的个性。

“我曾经有过两次丢脸的婚姻”。爱因斯坦对爱情的激情是有节制的,他从未让激情淹没自己冷静的理性。

爱因斯坦的私生活常为人所诟病。说的最多的是他的两次“丢脸的婚姻”以及穿插其中的几次婚外情。有作者甚至暗示他与终生未婚的女秘书杜卡斯之间存在不正当的关系。

爱因斯坦与第一任妻子米勒瓦在大学相识,但受到了来自家庭的强烈反对。一直到了米勒瓦为爱因斯坦生下了一个女孩,取名丽莎尔,两人才在1903年最终成了婚。不过,爱因斯坦却从来没有见过自己的私生女。而且丽莎尔在幼年时就夭折了。

爱因斯坦在信中对米勒瓦所流露出的“我怎么没有早点遇到你,我的小宝贝!”的这种柔情非常的短暂,在爱因斯坦声望益高,在两个小儿子出世后,而米勒瓦也开始出现了精神分裂症的症状时,夫妻间的恩爱很快就消失了,剩下的只有互相的嘲笑和欺骗。爱因斯坦在1913年写给他的堂妹艾尔莎的信上说:“(米勒瓦)是一个很不友善,毫无幽默感的生物——只要她在,就会拼命破坏别人快乐的生活。”艾尔莎那时候已经成为了爱因斯坦的情人,并后来于1919年成为他的第二任妻子。

“我不会希望自己嫁给他,但我们依然喜欢他,尽管他存在许多的缺点。”(卡拉普爱斯)

狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。

四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。

四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。

相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。

3 狭义相对论基本原理

物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。

伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑
相对论分为广义相对论和狭义相对论
广义相对论的基本概念解释:

广义相对论是爱因斯坦继狭义相对论之后,深入研究引力理论,于1913年提出的引力场的相对论理论。这一理论完全不同于牛顿的引力论,它把引力场归结为物体周围的时空弯曲,把物体受引力作用而运动,归结为物体在弯曲时空中沿短程线的自由运动。因此,广义相对论亦称时空几何动力学,即把引力归结为时空的几何特性。

如何理解广义相对论的时空弯曲呢?这里我们借用一个模型式的比拟来加以说明。假如有两个质量很大的钢球,按牛顿的看法,它们因万有引力相互吸引,将彼此接近。而爱因斯坦的广义相对论则并不认为这两个钢球间存在吸引力。它们之所以相互靠近,是由于没有钢球出现时,周围的时空犹如一张拉平的网,现在两个钢球把这张时空网压弯了,于是两个钢球就沿着弯曲的网滚到一起来了。这就相当于因时空弯曲物体沿短程线的运动。所以,爱因斯坦的广义相对论是不存在“引力”的引力理论。

进一步说,这个理论是建立在等效原理及广义协变原理这两个基本假设之上的。等效原理是从物体的惯性质量与引力质量相等这个基本事实出发,认为引力与加速系中的惯性力等效,两者原则上是无法区分的;广义协变原理,可以认为是等效原理的一种数学表示,即认为反映物理规律的一切微分方程应当在所有参考系中保持形式不变,也可以说认为一切参考系是平等的,从而打破了狭义相对论中惯性系的特殊地位,由于参考系选择的任意性而得名为广义相对论。

我们知道,牛顿的万有引力定律认为,一切有质量的物体均相互吸引,这是一种静态的超距作用。

在广义相对论中物质产生引力场的规律由爱因斯坦场方程表示,它所反映的引力作用是动态的,以光速来传递的。

广义相对论是比牛顿引力论更一般的理论,牛顿引力论只是广义相对论的弱场近似。所谓弱场是指物体在引力场中的引力能远小于固有能,力场中,才显示出两者的差别,这时必须应用广义相对论才能正确处理引力问题。

广义相对论在1915年建立后,爱因斯坦就提出了可以从三个方面来检验其正确性,即所谓三大实验验证。这就是光线在太阳附近的偏折,水星近日点的进动以及光谱线在引力场中的频移,这些不久即为当时的实验观测所证实。以后又有人设计了雷达回波时间延迟实验,很快在更高精度上证实了广义相对论。60年代天文学上的一系列新发现:3K微波背景辐射、脉冲星、类星体、X射电源等新的天体物理观测都有力地支持了广义相对论,从而使人们对广义相对论的兴趣由冷转热。特别是应用广义相对论来研究天体物理和宇宙学,已成为物理学中的一个热门前沿。

爱因斯坦一直把广义相对论看作是自己一生中最重要的科学成果,他说过,“要是我没有发现狭义相对论,也会有别人发现的,问题已经成熟。但是我认为,广义相对论不一样。”确实,广义相对论比狭义相对论包含了更加深刻的思想,这一全新的引力理论至今仍是一个最美好的引力理论。没有大胆的革新精神和不屈不挠的毅力,没有敏锐的理论直觉能力和坚实的数学基础,是不可能建立起广义相对论的。伟大的科学家汤姆逊曾经把广义相对论称作为人类历史上最伟大的成就之一。

狭义相对论就是
狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。
相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。
物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。
伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。
著名的麦克尔逊--莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理,光速不变原理。
由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0。99倍光速,人的速度也是0。99倍光速,那么地面观测者的结论不是1。98倍光速,而是0。999949倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。
关于光的性质,还有很多谜,直到现在也无法用科学解释。光是怎样产生的?在空间如何传播?光怎样从物质出现?光是什么,是物质、振动、还是纯能?颜色是否为光必不可少?对于这许许多多的问题,科学已经作出了部分解释,但归根结底,这些问题尚未解答。不过,20世纪初,在人们了解光、研究光的过程中,带来了物理学的两场革命,这就是相对论和量子论。为建立这两个理论体系,许多科学家都作出了重要贡献,他们都是一些杰出的物理学大师,其中最为突出的是爱因斯坦。

爱因斯坦的学生时代

艾伯特·爱因斯坦于1879年3月14日在德国小城乌尔姆出生,他的父母都是犹太人。爱因斯坦有一个幸福的童年,他的父亲是位平静、温顺的好心人,爱好文学和数学。他的母亲个性较强,喜爱音乐,并影响了爱因斯坦,爱因斯坦从六岁起学小提琴,从此小提琴成为他的终生伴侣。爱因斯坦的父母对他有着良好的影响和家庭教育,家中弥漫着自由的精神和祥和的气氛。

和牛顿一样,爱因斯坦年幼时也未显出智力超群,相反,到了四岁多还不会说话,家里人甚至担心他是个低能儿。六岁时他进入了国民学校,是一个十分沉静的孩子,喜欢玩一些需要耐心和坚韧的游戏,例如用纸片搭房子。1888年进入了中学后,学业也不突出,除了数学很好以外,其他功课都不怎么样,尤其是拉丁文和希腊文,他对古典语言毫无兴趣。当时的德国学校必须接受宗教教育,开始时爱因斯坦非常认真,但当他读了通俗的科学书籍后,认识到宗教里有许多故事是不真实的。12岁时他放弃了对宗教的信仰,并对所有权威和社会环境中的信念产生了怀疑,并发展成一种自由的思想。爱因斯坦发现周围有一个巨大的自然世界,它离开人类独立存在,就象一个永恒的谜。他看到,许多他非常尊敬和钦佩的人在专心从事这项事业时,找到了内心的自由和安宁。于是,少年时代的爱因斯坦就选择了科学事业,希望掌握这个自然世界的奥秘,而一旦选择了这一道路,就坚持不懈地走了下去,从来没有后悔过。

1895年,爱因斯坦来到瑞士苏黎世,准备投考苏黎世的联邦工业大学,虽然他的数学和物理考得很不错,但其他科目没有考好,学校校长推荐他去瑞士的阿劳州立中学学习一年,以补齐功课。在阿劳州立中学的这段时光中使爱因斯坦感到快乐,他尝到了瑞士自由的空气和阳光,并决心放弃德国国籍。

1896年,爱因斯坦正式成为一个无国籍的人,并考进了联邦工业大学。大学期间,爱因斯坦迷上了物理学,一方面,他阅读了德国著名物理学家基尔霍夫、赫兹等人的著作,钻研了麦克斯韦的电磁理论和马赫的力学,并经常去理论物理学教授的家中请教。另一方面,他的大部分时间是去物理实验室去做实验,迷恋于直接观察和测量。1900年,爱因斯坦大学毕业。1901年,他获得了瑞士国籍。1902年,在他的朋友格罗斯曼的帮助下,爱因斯坦终于在伯尔尼的瑞士联邦专利局找到了一份稳定的工作——当技术员。

狭义相对论的创立

早在16岁时,爱因斯坦就从书本上了解到光是以很快速度前进的电磁波,他产生了一个想法,如果一个人以光的速度运动,他将看到一幅什么样的世界景象呢?他将看不到前进的光,只能看到在空间里振荡着却停滞不前的电磁场。这种事可能发生吗?

与此相联系,他非常想探讨与光波有关的所谓以太的问题。以太这个名词源于希腊,用以代表组成天上物体的基本元素。17世纪,笛卡尔首次将它引入科学,作为传播光的媒质。其后,惠更斯进一步发展了以太学说,认为荷载光波的媒介物是以太,它应该充满包括真空在内的全部空间,并能渗透到通常的物质中。与惠更斯的看法不同,牛顿提出了光的微粒说。牛顿认为,发光体发射出的是以直线运动的微粒粒子流,粒子流冲击视网膜就引起视觉。18世纪牛顿的微粒说占了上风,然而到了19世纪,却是波动说占了绝对优势,以太的学说也因此大大发展。当时的看法是,波的传播要依赖于媒质,因为光可以在真空中传播,传播光波的媒质是充满整个空间的以太,也叫光以太。与此同时,电磁学得到了蓬勃发展,经过麦克斯韦、赫兹等人的努力,形成了成熟的电磁现象的动力学理论——电动力学,并从理论与实践上将光和电磁现象统一起来,认为光就是一定频率范围内的电磁波,从而将光的波动理论与电磁理论统一起来。以太不仅是光波的载体,也成了电磁场的载体。直到19世纪末,人们企图寻找以太,然而从未在实验中发现以太。

但是,电动力学遇到了一个重大的问题,就是与牛顿力学所遵从的相对性原理不一致。关于相对性原理的思想,早在伽利略和牛顿时期就已经有了。电磁学的发展最初也是纳入牛顿力学的框架,但在解释运动物体的电磁过程时却遇到了困难。按照麦克斯韦理论,真空中电磁波的速度,也就是光的速度是一个恒量,然而按照牛顿力学的速度加法原理,不同惯性系的光速不同,这就出现了一个问题:适用于力学的相对性原理是否适用于电磁学?例如,有两辆汽车,一辆向你驶近,一辆驶离。你看到前一辆车的灯光向你靠近,后一辆车的灯光远离。按照麦克斯韦的理论,这两种光的速度相同,汽车的速度在其中不起作用。但根据伽利略理论,这两项的测量结果不同。向你驶来的车将发出的光加速,即前车的光速=光速+车速;而驶离车的光速较慢,因为后车的光速=光速-车速。麦克斯韦与伽利略关于速度的说法明显相悖。我们如何解决这一分歧呢?

19世纪理论物理学达到了巅峰状态,但其中也隐含着巨大的危机。海王星的发现显示出牛顿力学无比强大的理论威力,电磁学与力学的统一使物理学显示出一种形式上的完整,并被誉为“一座庄严雄伟的建筑体系和动人心弦的美丽的庙堂”。在人们的心目中,古典物理学已经达到了近乎完美的程度。德国著名的物理学家普朗克年轻时曾向他的老师表示要献身于理论物理学,老师劝他说:“年轻人,物理学是一门已经完成了的科学,不会再有多大的发展了,将一生献给这门学科,太可惜了。”

爱因斯坦似乎就是那个将构建崭新的物理学大厦的人。在伯尔尼专利局的日子里,爱因斯坦广泛关注物理学界的前沿动态,在许多问题上深入思考,并形成了自己独特的见解。在十年的探索过程中,爱因斯坦认真研究了麦克斯韦电磁理论,特别是经过赫兹和洛伦兹发展和阐述的电动力学。爱因斯坦坚信电磁理论是完全正确的,但是有一个问题使他不安,这就是绝对参照系以太的存在。他阅读了许多著作发现,所有人试图证明以太存在的试验都是失败的。经过研究爱因斯坦发现,除了作为绝对参照系和电磁场的荷载物外,以太在洛伦兹理论中已经没有实际意义。于是他想到:以及绝对参照系是必要的吗?电磁场一定要有荷载物吗?

爱因斯坦喜欢阅读哲学著作,并从哲学中吸收思想营养,他相信世界的统一性和逻辑的一致性。相对性原理已经在力学中被广泛证明,但在电动力学中却无法成立,对于物理学这两个理论体系在逻辑上的不一致,爱因斯坦提出了怀疑。他认为,相对论原理应该普遍成立,因此电磁理论对于各个惯性系应该具有同样的形式,但在这里出现了光速的问题。光速是不变的量还是可变的量,成为相对性原理是否普遍成立的首要问题。当时的物理学家一般都相信以太,也就是相信存在着绝对参照系,这是受到牛顿的绝对空间概念的影响。19世纪末,马赫在所著的《发展中的力学》中,批判了牛顿的绝对时空观,这给爱因斯坦留下了深刻的印象。1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久。突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题。第二天,他又来到贝索家,说:谢谢你,我的问题解决了。原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与光信号的速度有一种不可分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前。

1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表。这篇论文是关于狭义相对论的第一篇文章,它包含了狭义相对论的基本思想和基本内容。狭义相对论所根据的是两条原理:相对性原理和光速不变原理。爱因斯坦解决问题的出发点,是他坚信相对性原理。伽利略最早阐明过相对性原理的思想,但他没有对时间和空间给出过明确的定义。牛顿建立力学体系时也讲了相对性思想,但又定义了绝对空间、绝对时间和绝对运动,在这个问题上他是矛盾的。而爱因斯坦大大发展了相对性原理,在他看来,根本不存在绝对静止的空间,同样不存在绝对同一的时间,所有时间和空间都是和运动的物体联系在一起的。对于任何一个参照系和坐标系,都只有属于这个参照系和坐标系的空间和时间。对于一切惯性系,运用该参照系的空间和时间所表达的物理规律,它们的形式都是相同的,这就是相对性原理,严格地说是狭义的相对性原理。在这篇文章中,爱因斯坦没有多讨论将光速不变作为基本原理的根据,他提出光速不变是一个大胆的假设,是从电磁理论和相对性原理的要求而提出来的。这篇文章是爱因斯坦多年来思考以太与电动力学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再是必要的,以太漂流是不存在的。

什么是同时性的相对性?不同地方的两个事件我们何以知道它是同时发生的呢?一般来说,我们会通过信号来确认。为了得知异地事件的同时性我们就得知道信号的传递速度,但如何没出这一速度呢?我们必须测出两地的空间距离以及信号传递所需的时间,空间距离的测量很简单,麻烦在于测量时间,我们必须假定两地各有一只已经对好了的钟,从两个钟的读数可以知道信号传播的时间。但我们如何知道异地的钟对好了呢?答案是还需要一种信号。这个信号能否将钟对好?如果按照先前的思路,它又需要一种新信号,这样无穷后退,异地的同时性实际上无法确认。不过有一点是明确的,同时性必与一种信号相联系,否则我们说这两件事同时发生是没有意义的。

光信号可能是用来对时钟最合适的信号,但光速不是无限大,这样就产生一个新奇的结论,对于静止的观察者同时的两件事,对于运动的观察者就不是同时的。我们设想一个高速运行的列车,它的速度接近光速。列车通过站台时,甲站在站台上,有两道闪电在甲眼前闪过,一道在火车前端,一道在后端,并在火车两端及平台的相应部位留下痕迹,通过测量,甲与列车两端的间距相等,得出的结论是,甲是同时看到两道闪电的。因此对甲来说,收到的两个光信号在同一时间间隔内传播同样的距离,并同时到达他所在位置,这两起事件必然在同一时间发生,它们是同时的。但对于在列车内部正中央的乙,情况则不同,因为乙与高速运行的列车一同运动,因此他会先截取向着他传播的前端信号,然后收到从后端传来的光信号。对乙来说,这两起事件是不同时的。也就是说,同时性不是绝对的,而取决于观察者的运动状态。这一结论否定了牛顿力学中引以为基础的绝对时间和绝对空间框架。

相对论认为,光速在所有惯性参考系中不变,它是物体运动的最大速度。由于相对论效应,运动物体的长度会变短,运动物体的时间膨胀。但由于日常生活中所遇到的问题,运动速度都是很低的(与光速相比),看不出相对论效应。

爱因斯坦在时空观的彻底变革的基础上建立了相对论力学,指出质量随着速度的增加而增加,当速度接近光速时,质量趋于无穷大。他并且给出了著名的质能关系式:E=mc2,质能关系式对后来发展的原子能事业起到了指导作用。

广义相对论的建立

1905年,爱因斯坦发表了关于狭义相对论的第一篇文章后,并没有立即引起很大的反响。但是德国物理学的权威人士普朗克注意到了他的文章,认为爱因斯坦的工作可以与哥白尼相媲美,正是由于普朗克的推动,相对论很快成为人们研究和讨论的课题,爱因斯坦也受到了学术界的注意。

1907年,爱因斯坦听从友人的建议,提交了那篇著名的论文申请联邦工业大学的编外讲师职位,但得到的答复是论文无法理解。虽然在德国物理学界爱因斯坦已经很有名气,但在瑞士,他却得不到一个大学的教职,许多有名望的人开始为他鸣不平,1908年,爱因斯坦终于得到了编外讲师的职位,并在第二年当上了副教授。1912年,爱因斯坦当上了教授,1913年,应普朗克之邀担任新成立的威廉皇帝物理研究所所长和柏林大学教授。

在此期间,爱因斯坦在考虑将已经建立的相对论推广,对于他来说,有两个问题使他不安。第一个是引力问题,狭义相对论对于力学、热力学和电动力学的物理规律是正确的,但是它不能解释引力问题。牛顿的引力理论是超距的,两个物体之间的引力作用在瞬间传递,即以无穷大的速度传递,这与相对论依据的场的观点和极限的光速冲突。第二个是非惯性系问题,狭义相对论与以前的物理学规律一样,都只适用于惯性系。但事实上却很难找到真正的惯性系。从逻辑上说,一切自然规律不应该局限于惯性系,必须考虑非惯性系。狭义相对论很难解释所谓的双生了佯谬,该佯谬说的是,有一对孪生兄弟,哥在宇宙飞船上以接近光速的速度做宇宙航行,根据相对论效应,高速运动的时钟变慢,等哥哥回来,弟弟已经变得很老了,因为地球上已经经历了几十年。而按照相对性原理,飞船相对于地球高速运动,地球相对于飞船也高速运动,弟弟看哥哥变年轻了,哥哥看弟弟也应该年轻了。这个问题简直没法回答。实际上,狭义相对论只处理匀速直线运动,而哥哥要回来必须经过一个变速运动过程,这是相对论无法处理的。正在人们忙于理解相对狭义相对论时,爱因斯坦正在接受完成广义相对论。

1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和由此得出的结论》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱因斯坦关于等效原理的思想又不断发展。他以惯性质量和引力质量成正比的自然规律作为等效原理的根据,提出在无限小的体积中均匀的引力场完全可以代替加速运动的参照系。爱因斯坦并且提出了封闭箱的说法:在一封闭箱中的观察者,不管用什么方法也无法确定他究竟是静止于一个引力场中,还是处在没有引力场却在作加速运动的空间中,这是解释等效原理最常用的说法,而惯性质量与引力质量相等是等效原理一个自然的推论。

1915年11月,爱因斯坦先后向普鲁士科学院提交了四篇论文,在这四篇论文中,他提出了新的看法,证明了水星近日点的进动,并给出了正确的引力场方程。至此,广义相对论的基本问题都解决了,广义相对论诞生了。1916年,爱因斯坦完成了长篇论文《广义相对论的基础》,在这篇文章中,爱因斯坦首先将以前适用于惯性系的相对论称为狭义相对论,将只对于惯性系物理规律同样成立的原理称为狭义相对性原理,并进一步表述了广义相对性原理:物理学的定律必须对于无论哪种方式运动着的参照系都成立。

爱因斯坦的广义相对论认为,由于有物质的存在,空间和时间会发生弯曲,而引力场实际上是一个弯曲的时空。爱因斯坦用太阳引力使空间弯曲的理论,很好地解释了水星近日点进动中一直无法解释的43秒。广义相对论的第二大预言是引力红移,即在强引力场中光谱向红端移动,20年代,天文学家在天文观测中证实了这一点。广义相对论的第三大预言是引力场使光线偏转,。最靠近地球的大引力场是太阳引力场,爱因斯坦预言,遥远的星光如果掠过太阳表面将会发生一点七秒的偏转。1919年,在英国天文学家爱丁顿的鼓动下,英国派出了两支远征队分赴两地观察日全食,经过认真的研究得出最后的结论是:星光在太阳附近的确发生了一点七秒的偏转。英国皇家学会和皇家天文学会正式宣读了观测报告,确认广义相对论的结论是正确的。会上,著名物理学家、皇家学会会长汤姆孙说:“这是自从牛顿时代以来所取得的关于万有引力理论的最重大的成果”,“爱因斯坦的相对论是人类思想最伟大的成果之一”。爱因斯坦成了新闻人物,他在1916年写了一本通俗介绍相对认的书《狭义相对论与广义相对论浅说》,到1922年已经再版了40次,还被译成了十几种文字,广为流传。

相对论的意义

狭义相对论和广义相对论建立以来,已经过去了很长时间,它经受住了实践和历史的考验,是人们普遍承认的真理。相对论对于现代物理学的发展和现代人类思相的发展都有巨大的影响。 相对论从逻辑思想上统一了经典物理学,使经典物理学成为一个完美的科学体系。狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律。广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,并建立了广义协变的引力理论,而牛顿引力理论只是它的一级近似。这就从根本上解决了以前物理学只限于惯性系数的问题,从逻辑上得到了合理的安排。相对论严格地考察了时间、空间、物质和运动这些物理学的基本概念,给出了科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。

狭义相对论给出了物体在高速运动下的运动规律,并提示了质量与能量相当,给出了质能关系式。这两项成果对低速运动的宏观物体并不明显,但在研究微观粒子时却显示了极端的重要性。因为微观粒子的运动速度一般都比较快,有的接近甚至达到光速,所以粒子的物理学离不开相对论。质能关系式不仅为量子理论的建立和发展创造了必要的条件,而且为原子核物理学的发展和应用提供了根据。

广义相对论建立了完善的引力理论,而引力理论主要涉及的是天体。到现在,相对论宇宙学进一步发展,而引力波物理、致密天体物理和黑洞物理这些属于相对论天体物理学的分支学科都有一定的进展,吸引了许多科学家进行研究。

一位法国物理学家曾经这样评价爱因斯坦:“在我们这一时代的物理学家中,爱因斯坦将位于最前列。他现在是、将来也还是人类宇宙中最有光辉的巨星之一”,“按照我的看法,他也许比牛顿更伟大,因为他对于科学的贡献,更加深入地进入了人类思想基本要领的结构中。”
简单的说 相对论是时间和空间的统一
狭义只考虑速度恒定的运动中不同参考系下时空坐标的转换 广义还考虑变速运动
爱因斯坦曾巧妙而好理解地说,当你坐在一个美丽的姑娘身边两个小时,却感觉只坐了一分钟;相反你坐在一个很热的火炉边一分钟,却感觉想坐了两个小时。这就是相对论。

地心引力是怎么形成的

地心引力(Gravity):一切有质量的物体之间产生的互相吸引的作用力。地球对其他物体的这种作用力,叫做地心引力。其他物体所受到的地心引力方向向着任何方向。 根据牛顿的万有引力定律,任何有质量的两种物质之间都有引力。 

地球引力是因地球本身质量而具有的引力。地球表面重力加速度的表示符号为g,近似地等于每平方秒9.8米或每平方秒32英尺。

这表示,当忽略空气阻力时,物件在地球表面上自由下落的加速度为 9.8 m/s2。 换言之,静止物件下落一秒后的速度为9.8m/s,两秒后为19.6 m/s,如此类推。

地球本身也受到下落物体等值的吸引力加速,也就是说地球会朝着下落物体的方向加速移动,但是地球质量远大于下落物的质量,所以下落物对地球的加速度非常小。

扩展资料:

近代物理(广义相对论)认为地心引力是由于时空弯曲而产生。众所周知,两点之间线段最短,这是在平面几何中的公理,这线段就是短程线。然而,在被弯曲的四维时空里,短程线也被弯曲了。

因此受到引力作用,行星沿短程线向太阳靠近,由于质量巧合(包括速度巧合)的原因,又因为行星具有惯性(很多人理解成离心力,这是错的,离心力只是假象,宇宙中根本并不存在离心力,至少现在没有发现),从而周而复始的绕太阳按椭圆轨道公转。

当质量不巧合时,会出现引力跳板现象,或撞向太阳。其中,构成天体系统的主要原因并不是引力,而是质量所引起的时空扭曲。

在地球上重力的吸引作用赋予物体重量并使它们向地面下落。此外,万有引力是太阳和地球等天体之所以存在的原因;没有万有引力天体将无法相互吸引形成天体系统,而我们所知的生命形式也将不会出现。

万有引力同时也使地球和其他天体按照它们自身的轨道围绕太阳运转,月球按照自身的轨道围绕地球运转,形成潮汐,以及其他我们所观察到的各种各样的自然现象。

早在1679年,著名科学家牛顿提出了万有引力定律,认为天体间因有质量而有引力,并且发现了引力对一切物体的作用性质都是相同的。

例如,当地球引力把任何一个物体吸引到地面时,其加速度是9.8米/秒’。很显然,牛顿所提出的引力,实际上就是重力。但是引力是如何实现的呢?它的作用机制是什么?万有引力定律不能解答。

引力与电力有相似之处,如二力均与物体间距离的平方成反比,与两物体所带力荷(引力是质量,电力是电荷)的乘积成正比。

但二力的比例系数相差悬殊,电力远远大于引力。例如,在氢原子中,原子核与电子间的电吸引力是它们间引力的 1040倍!二力间还存在一些其他的差别,如(两物质的)同性电荷间存在相互排斥力,异性电荷间存在吸引力,而万有引力却总是吸引力。

1916年爱因斯坦广义相对论的问世,提出了崭新的引力场理论。他认为由引力造成的加速度,可以同由其他力造成的加速度区分开来。

这个命题就是爱因斯坦的等价原理,即一个加速系统与一个引力场等效。

设想,一个人在远离地球的太空中乘一架升降机上升,上升的加速度为9.8米/秒·平方,由于速度变化产生了阻力,这个人双脚会紧紧压在升降机的底板上,就像升降机停在地球表面上不动一样,但无法说明他所受到的是引力还是惯性。

因此,牛顿所说的万有引力,在爱因斯坦看来,根本不是什么引力,而是时空的一种属性。在这种成曲线的四维时空连续体中,根本不需引力.天体是按自己应有的曲线轨道运行的。

1918年爱因斯坦根据引力场理论预言有引力波存在。他认为高速运动着(加速运动)的物质会辐射引力,引力波就是这种引力的载体,就像光波是电磁力的载体一样。引力波的速度与真空中的光速相同。

参考资料来源:百度百科-地心引力

  地心引力来自于万有引力:
  万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小与两物体的质量的乘积成正比,与两物体间距离的平方成反比。
  地心引力(Gravity):一切有质量的物体之间产生的互相吸引的作用力。地球对其他物体的这种作用力,叫做地心引力。其他物体所受到的地心引力方向向着任何方向。 根据牛顿的万有引力定律,任何有质量的两种物质之间都有引力。

  打个比方,如果地球不绕太阳转那会被太阳吸过去,但是,离心力只是一个虚力并不真正存在,更确切的说是万有引力提供了转动所需要的向心力,所以地球会对其附近的物体产生比较大的吸引效果。
  根据牛顿的万有引力定律,任何有质量的两种物质之间都有引力。地球本身有相当大的质量,所以也会对地球周围的任何物体表现出引力。拿一个杯子举例,地球随时对杯子表现出引力,杯子也对地球表现出引力。地球的质量太大了,对杯子的引力也就非常大,所以,就把杯子吸引过去了,方向,就是向着地球中心的方向,这个力就是地心引力。
根据牛顿的万有引力定律我们可以知道,大物体的分子场运动对小的物体的分子场运动会产生一定的破坏和同化吸引,密度大的对密度小的物体也是如此,所以相对地球的引力问题我们就不言而喻了
一切有质量的物体之间产生的互相吸引的作用力。地球对其他物体的这种作用力,叫做地心引力。其他物体所受到的地心引力方向向着地心。
这是由于地球自转造成的.地球自转会产生一个叫地转偏向立的力.在北半球它使物体在运动时方向想右偏;在南半球它使物体运动是方向向左偏.所以在北半球是逆时针,在南半球的话就是顺时针.
根据牛顿的万有引力定律,任何有质量的两种物质之间都有引力。
地球本身有相当大的质量,所以也会对地球周围的任何物体表现出引力。拿一个杯子举例,地球随时对杯子表现出引力,杯子也对地球表现出引力。地球的质量太大了,对杯子的引力也就非常大,所以,就把杯子吸引过去了,方向,就是向着地球中心的方向,这个力就是地心引力。
重力并不等于地球对物体的引力。由于地球本身的自转,除了两极以外,地面上其他地点的物体,都随着地球一起,围绕地轴做匀速圆周运动,这就需要有垂直指向地轴的向心力,这个向心力只能由地球对物体的引力来提供,我们可以把地球对物体的引力分解为两个分力,一个分力F1,方向指向地轴,大小等于物体绕地轴做匀速圆周运动所需的向心力;另一个分力G就是物体所受的重力(图示)其中F1=mw2r(w为地球自转角速度,r为物体旋转半径),可见F1的大小在两极为零,随纬度减少而增加,在赤道地区为最大F1max。因物体的向心力是很小的,所以在一般情况下,可以认为物体的重力大小就是万有引力的大小,即在一般情况下可以略去地球转动的效果
地心引力的产生,是由于万有引力。
任意两个物体或两个粒子间的与其质量乘积相关的吸引力,自然界中最普遍的力,简称引力。在粒子物理学中则称引力相互作用和强力、弱力、电磁力合称4种基本相互作用。引力是其中最弱的一种,两个质子间的万有引力只有它们间的电磁力的1/(1.235*10的36次方),质子受地球的引力也只有它在一个不强的电场1000伏/米的电磁力的1/(9.761*10的9次方)。因此研究粒子间的作用或粒子在电子显微镜和加速器中运动时,都不考虑万有引力的作用。
其本质是万有引力,地球与物体之间的万有引力就是重力,也叫地心引力。每个物体之间都存在引力,与两个物体的总质量和中心距离有关。有公式可查的

引力到底是由引力子还是空间弯曲产生的?有什么依据吗?

目前的主流物理学界当然是认为引力产生的本质是时空弯曲。依据,是上世纪伟大物理学家爱因斯坦提出的广义相对论。我们都知道,物理学中的四大基本力,其中最神奇的一种力量,莫过于引力了。引力无处不在,无所不在;

它决定着宇宙中的种种规则,也影响到了人类生活的方方面面。因此,引力一直以来,也都是科学家探索追寻的目标之一。比如说,牛顿就是因为“万有引力”定律,跻身于伟大物理学家的行列之中;

再比如说,上世纪的著名物理学家爱因斯坦,也是因为完善了引力理论饱受赞誉。那么,引力的起源到底是什么呢?说实话,在理论物理学界,对这个问题当然有五花八门的解释。有人说,引力实质是时间和空间弯曲的一种结果;

也有人认为,引力是由“引力子”组成的,引力子目前还不能被人类的探测工具所发现;超弦理论,则是认定引力起源于弦的震荡。总而言之,后两种说法,虽然支持者也有不少,但是缺乏实质性的证据。

而“引力是时空弯曲”,目前已经得到了很多实证的说明。比如说,二零一七年,NASA在二十万光年以外的角落,检测到的引力波信号;这恰好和爱因斯坦在一百年前的预言不谋而合。同时,也正是因为这种引力理论,我们才发现了黑洞。

没错,时空弯曲带来引力,引力让时空的结构有所不同,这是上世纪伟大物理学家爱因斯坦在自己的广义相对论中提出的假设。可以说,这是主流物理学界最认可的一种说法,基本上已经“盖棺论定”,它就是对的了。

引力,时间,空间,三者之间让宇宙形成了一种平衡,稳固的关系。

目前还没有可靠的依据,很多的科学家一直都在寻找,但是一直被封锁着一样,没有一点头绪。简而言之,广义相对论告诉我们,弯曲的时空和万有引力本质上是同一件事; 量子场论告诉我们, 两个物体之间虚拟重力子群的连续交换和它们之间的万有引力本质上是同一件事。由此,不难得出结论, 弯曲时空和虚拟重力子群,至少目前,重力是由空间弯曲产生的。

重力的本质是空间弯曲,而重力只是空间弯曲的一种表现,在牛顿的经典力学中,万有引力是瞬间感应的,也就是说,它是瞬间完成的。牛顿没有解释为什么所有事物之间都有重力,也没有解释重力的本质,但是爱因斯坦给出的重力的本质,换句话说,空间是弯曲的,并指出重力不会立即传播。重力传输也需要时间,并且传输速度与光速完全相同。

在最近几十年中,科学家在天文学上的不断发现证实了爱因斯坦广义相对论的正确性。例如,牛顿的经典力学无法解释水星的近太阳推进,相对论很好地预测和解释了水星推进的发生,后来发现的光线在穿过大质量天体附近后扭曲,更重要的是引力波的发现,都有力地证实了广义相对论的可靠性,然而,科学家们并没有放弃所谓的引力子概念。

这个概念存在的原因是科学家想要统治宇宙中的基本力量。目前,只有重力尚未统一,如果引力子真的存在,则作用力将真正统一。但是到目前为止,引力子的概念只是一个假设。科学家还没有发现引力子的存在。不幸的是,目前引力子理论本身存在很大的缺陷,其应用范围极其狭窄,我们确实找不到引力子。

引力是由空间弯曲产生的,目前这是所有科学家都认可的科学理论,是通过观察空间活动得出的结论!
相对论描述引力的本质是时空弯曲,就像水往低处流一样,物质会像时空弯曲的低点运动,牛顿的万有引力只是一个近似解,四大基本力除了引力都有传递力的粒子,引力子并不存在。
哪有什么引力子!空间本来就是弯曲的,只不曲率半径不同而已。
首先要弄清楚:引力是什么?引力场又是什么?大自然是运动的,运动仅仅有两种基本形态:曲线运动和直纯运动,为了运动能一直进行下去,永不停息,只能是直线运动和圆圈运动。这是大自然无奈而精彩的选择。应该强调的是:是运动产生了力,而非力产生了运动!这是爱因斯坦的质能方程早已经告诉我们的。所以,引力就是圆圈运动的向心力。在向心力控制的时空中,就是引力场。结论是,而且仅仅是:引力是圆圆圈运动产生的。空间本来就是弯曲。不过,曲率越大,引力越大而已。
文章标题: 时空的弯曲又何以使其中的物体产生"莫名的"加速度
文章地址: http://www.xdqxjxc.cn/jingdianwenzhang/167408.html
文章标签:加速度  使其  弯曲  物体  莫名
Top