时间: 2023-03-28 22:01:23 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 105次
地球和地壳是地球化学研究的主要对象,了解地球内部物质的成分与状态是理解地壳中各类地球化学过程的基本前提。由于地球的物质组成是不均一的,我们不能以地表的物质成分代表地球的组成,所以地球的结构模型成为研究地球化学成分的基础。至今对地球内部结构与物质成分和状态的认识还主要依据间接资料。
1.2.1.1 地球的结构
地球物理学资料是建立地球内部结构最重要的基础。依据地震波传播速度在地球内部的变化和显示出的间断面,以及地球内部物质密度等的不均匀分布,人们已得出地球具有圈层结构的认识,即地球是由地壳、地幔和地核等不同层圈组成的(图1.4)。
1.2.1.2 地壳的组成
从地表到莫霍面的地球外层为地壳。已知地壳是不均一的,这种不均一性在地壳厚度、成分上都有表现,特别是大陆地壳与大洋地壳之间存在明显差异。
通过精密的地震波研究、超深钻探索以及对大陆地壳断面的研究,发现大陆地壳是由沉积岩、变质岩、各类侵入岩和火山岩镶嵌组成的,并且在物质平均成分上大致存在由浅到深的渐变趋势,在近地表处接近花岗岩成分而到深处变为辉长岩成分(Mason,1982)。有人认为上地壳厚约8~12 km,由偏酸性的火成岩和沉积岩组成;下地壳主要是麻粒岩、长英质麻粒岩、镁铁质麻粒岩。20世纪80 年代以来的研究产生了一些新的认识,例如,大陆下地壳在物质成分上也极不均匀,可在超基性岩至中性岩的组成范围变化,因此相当于玄武岩成分的统一下地壳或硅镁层看来并不存在。上地壳K、Rb、U、Th 等元素含量比下地壳富集 10 倍或更多,但在上、下地壳中Sr,Pb等的含量大体相近。在正常稳定的大陆地壳中,地壳底部的温度为400~600 ℃,因此地壳物质处于固态。
图1.4 地球结构模型
地壳的化学组成和元素丰度将在本章第三节进行介绍。
1.2.1.3 地幔的组成
根据布伦(1975)的地球模型,地幔被划分为B、C和D层。莫霍面以下的岩石圈部分和软流层(或低速层),一般深度为33~410 km,这部分地幔为B层,通常被称为上地幔。但也有将C层(约410~1000 km)也划入上地幔的。D层(约1000~2900 km)为下地幔。
研究地幔物质组成主要有以下三个途径:①研究火山岩管中呈包体状的可能为地幔岩石的样品;②高温、高压下矿物和岩石的实验研究;③岩浆地幔源区地球化学示踪的研究。实验结果表明:纯橄榄岩(橄榄石)、橄榄岩(橄榄石和辉石)和榴辉岩(石榴子石和辉石)三类岩石,正好具有上地幔中已测出的地震波速和弹性。球粒陨石物质的基本成分是含有少量斜长石的橄榄岩。加之在火山岩(玄武岩和含金刚石的金伯利岩)中常常出现纯橄榄岩和橄榄岩的包体(榴辉岩包体较少见)。因此一般认为地幔主要由镁-铁硅酸盐组成。
对莫霍面的性质曾存在不同意见。一种观点认为它是物理学不连续面,是辉长岩质的下地壳岩石相变为榴辉岩的结果,榴辉岩具有较高的密度和与辉长岩基本相同的成分。另一种观点认为莫霍面为化学不连续面,上地幔具有超基性岩的成分(橄榄岩或纯橄榄岩);与辉长岩的基性岩成分不同。前一观点的困难是,榴辉岩的密度(常约为3.4~3.6)较上地幔密度(3.32~3.65)偏高,榴辉岩包体在地幔岩浆岩中也较少见。因此,榴辉岩在地幔中有限。大多数橄榄岩包体并不能代表原始上地幔物质的真实成分,因为其中Ca、K、Sr、Ba及其他一些元素的含量太低了,它们不可能通过部分熔融产生玄武岩,这些包体更可能代表着已熔出玄武质岩浆后的固相残留体。
基于上述考虑,林伍德(Ringwood,1966、1979)设想:在岩石圈的橄榄岩部分(上地幔的顶部),地幔具有 3 份橄榄岩和 1 份玄武岩混合物的成分,谓之“地幔岩”(pyrolite)。通过分馏熔融,这种岩石将产生20%~40%的典型玄武岩浆,并留下橄榄岩或纯橄榄岩的残余体。在大陆和大洋之下上地幔的地温相差很大,地幔岩的成分也存在区域性差异。在前寒武纪地盾之下,上地幔在相当大的深度范围内是由含少量榴辉岩析离体的纯橄榄岩或橄榄岩组成的;而在大洋区之下,上地幔上部很薄,且主要由角闪岩(橄榄石和角闪石)组成。在纯橄榄岩-橄榄岩带之下(100~150 km)为较低密度的地幔岩带,其特征是存在硅酸盐物质通过部分熔融(约 1%?)形成的液体,因此这个带是地震波低速带。未分异出地壳前的原始地幔的成分如表1.9所示。这种原始地幔成分是基于地球总体成分相当于 CI型球粒陨石的观点、用 CI型球粒陨石的难熔亲石元素比值为限定计算得出的。
地幔岩模型的不足是,它不能说明火山喷出的大量挥发组分(H2O、Cl、S等)是如何产生的。目前榴辉岩和二辉橄榄岩在上地幔中的地位仍是争论中的问题。这两类岩石中的少量含水矿物(如金云母等)中容纳了多种挥发元素。
过渡层(C)的厚度约600 km,在该层内岩石密度和导电性明显增长,地震波速增至最大值,在中部(700 km)产生着大量深源地震,表明在此处地幔物质正发生明显改造。
曾有人认为C层密度的迅速增长与重金属(尤其是Fe)含量的增高有关,但因为Fe含量的增大将导致地震波速的减小,这一观点与事实不符。目前更倾向认为在过渡层中化学成分无明显改变,只发生着物质(硅酸盐矿物)的同质多象转变。林伍德设想在过渡层中存在如下同质多象转变或相变:
地球化学
这些同质多象转变已被实验研究证实,它们在过渡层的温度、压力条件下可以发生。
表1.9 原始地幔成分(wB)
洋中脊玄武岩的微量元素与同位素研究已表明,上地幔也具有明显的不均匀性。表1.10列出的是亏损地幔的平均成分。
1.2.1.4 地核的组成
地核由 Fe-Ni 合金组成的认识由来已久,现在仍为统治性的观点。现在对地核的组成倾向性的设想是:在 2900~5000 km 深度范围内存在着液态的镍铁,构成外核(E层),地震S横波在其中消失;而在5000 km深度以下的内核(G层),也由镍铁组成,但处于固态。内核和外核间有一过渡层(F层)。
实际测得的地核密度比将镍铁合金处于地核那样温度和压力下所具有的密度低10%,推测内核含有相当数量(10%~20%)的轻元素。S、C、Si 和 O已被提出作为可能加入地核的元素。S和 C是铁陨石中相对丰富的元素,并且只需较少量的S和C(与Si相较)就可使地核具有所观察到的密度。然而林伍德(1966、1977)认为,太阳星云中大部分的 S与其他挥发组分在地球形成的高温过程中已逸失,O更可能是地核中的较轻元素。S或 O的合金都与地球物理资料相协调,更多的学者倾向将 S 作为地核的较轻元素。但由于缺少地核温-压下的实验资料,还无法对地核中轻元素的类型和含量做出可靠估计。
表1.10 亏损地幔的平均成分(wB)
1.2.1.5 地球外部圈层的组成
壳、幔、核构成了固体地球的圈层,作为完整的地球圈层还应包括水圈、大气圈和生物圈。由于它们在地球总质量中所占的比例很小,对估计地球总体成分的影响不大,但它们与人类的生活密切相关。表1.11和表1.12给出了大气圈对流层和海水的平均成分。
自然地理-地球的圈层结构
石头是由岩浆凝结形成的。约占地壳总体积的65%。岩浆是在地壳深处或上地幔产生的高温炽热、粘稠、含有挥发分的硅酸盐熔融体。是形成各种岩浆岩和岩浆矿床的母体。岩浆的发生、运移、聚集、变化及冷凝成岩的全部过程,称为岩浆作用。
岩浆岩主要由硅酸盐矿物组成,此外,还常含微量磁铁矿等副矿物。根据岩石SiO₂含量,岩浆岩可分为四大类:超基性岩:SiO₂<45%;基性岩:SiO₂=45~52%;中性、碱性岩:SiO₂=52~65%;酸性岩:SiO₂>65%。
岩石是组成地壳的物质之一,是构成地球岩石圈的主要成分。其中,长石是地壳中最重要的造岩成分,比例达到60%,石英则是数量第二多的矿石。
岩石根据其成因、构造和化学成分分类,大多数岩石含有二氧化硅(SiO₂),而74.3%的地壳成分都是后者。岩石中硅的含量是决定岩石属性的重要因素之一。
扩展资料:
岩石按其成因主要分为火成岩(岩浆岩)、沉积岩和变质岩三大类。整个地壳中,火成岩大约占95%,沉积岩只有不足5%,变质岩最少。不过在不同的圈层,三种岩石的分布比例相差很大。地表的岩石中有75%是沉积岩,火成岩只有25%。
距地表越深,则火成岩和变质岩越多。地壳深部和上地幔,主要由火成岩和变质岩构成。火成岩占整个地壳体积的64.7%,变质岩占27.4%,沉积岩占7.9%。其中玄武岩和辉长岩又占全部火成岩的65.7%,花岗岩和其他浅色岩约占34%。
这三种岩石之间的区别不是绝对的。随着构成矿物的变化,它们的性质也会发生变化。随着时间和环境的变迁,它们会转变为另外一种性质的岩石。因而有人认为这种分类法较为武断。
火成岩、沉积岩、变质岩三者可以互相转化。火成岩经沉积作用成为沉积岩,经变质作用成为变质岩。变质岩也可再次成为新的沉积岩,沉积岩经变质作用成为变质岩,沉积岩、变质岩可被熔化,再次成为火成岩。
参考资料来源:百度百科——岩石
全站搜索