时间: 2023-11-10 15:01:31 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 102次
牛顿定律
“是什么力量让星球都悬浮在太空中,它们会掉下去吗?会掉到哪里去呢?”,其实会有这样的问题,还是因为没有彻底地理解牛顿定律。所以,我们可以先来简单聊一下牛顿到底说啥?
牛顿三定律概括下应该是这样的:
第一定律: 力是改变物体运动状态的原因 ;
第二定律:力的作用效果是使得物体获得加速度;
第三定律:力是物体间的相互作用,力的作用是相互的。
其实这就是地球的“引力”,所以是有“力”的作用。
可太空并不是这样的,太空可没有某个“下面”的地方在给地球提供吸引力。因此,在太空中,其实失重的状态。
所以, 我们是因为生活在地球上,所以才会觉得如果没有东西托着,东西就会往下掉,而忘记了之所以东西会掉落到地上是因为地球的引力。
在太空中吸引地球的,其实主要是太阳的引力 ,这是因为太阳的质量占到了整个太阳系的99.86%,而根据万有引力公式,万有引力与质量的成正比。所以, 要说地球要动,也是往太阳的方向靠,而不是所谓的往下掉 ,毕竟“下面”也没有什么大型天体在吸引。
只是因为地球具有一定的初速度,所以,地球才是绕着太阳转,如果地球没有初速度,那结果肯定是掉入太阳当中。太阳受到的是银河系中心物质和银河系内暗物质的吸引力,所以太阳带着太阳系绕着银河系运动。
引力的本质
刚才,我们解决的是“地球不回往下掉的”的问题。不过,可能你也要问了,那引力到底是什么呢?其实对于“引力”的拷问,一点不亚于那些诸如“生命的起源”,“宇宙的起源”等终极问题。我们可以客观描述一下,引力所描述的现象。说白了就是很多天体都绕着大质量的天体在转动,而且这个转还有个特点,不仅仅是简单的圆周,而是椭圆轨道,
不仅是椭圆,这个椭圆轨道还会动。这也被我们叫做: 进动 。
不仅轨道会动,还天体们还都是绕着质心在运动。
对于这种现象,早期的学者是一头雾水的。直到牛顿出现,才解决了大部分的问题。牛顿的万有引力定律,其实能解决的是椭圆轨道的问题,也能解决绕着之心运动的问题。但是“进动”的问题,一直也没有解决好。
如果,你要问牛顿,引力的本质到底是什么?说实在的,他会跟你说:让后来的人去解决吧。因为他确实不知道。而且由于牛顿的万有引力定律当中没有时间参量,所以 牛顿认为引力是一种超距作用 ,具体来说就是, 引力的传播是瞬间完成的 。如果太阳突然消失了,那太阳系所有的天体就会好像同时收到短信一样, 同时 都沿着轨道的切线方向飞出去。
关于引力的本质问题,在牛顿之后200余年,有个叫做爱因斯坦的科学家,开始着手研究,并提出了广义相对论。他认为,地球是“被迫”绕着太阳转的。为什么这么说呢?
他认为,时间和空间并不是分立的物理量,而是构成了三维时空,而光速就是三维时空的特殊属性。
至于引力,说白了就是因为太阳的质量特别大,扭曲了三维时空。
为了方便描述,我们把三维时空投影到二维来描述。那地球之所以会绕着太阳转,实际上太阳并没有施加了所谓的“引力”。而是地球在沿着自己的路径在运动,它其实就类似于地球在二维平面里走直线,这是符合牛顿第一定律的,只不过在三维时空中这条路径被太阳给扭曲了。
我们称这种运动叫做沿着三维时空的测地线在运动。只是,从我们的视觉上看,它是在绕圈圈,对于三维时空而言,它其实是在“走直线”。
所以,在广义相对论当中,爱因斯坦认为, 引力的本质是时空的弯曲 。而这个理论很好地解释了“进动”的问题,并且在描述引力时,与现实的误差甚至小于牛顿定律,也就是比牛顿定律还要精准。因此, 爱因斯坦的广义相对论成为了诠释引力本质的主流理论 。
所以, 这也解决了开头的问题,其实地球是沿着自己的路径在运动,而这条路径看起来就好像是地球绕着太阳转一样,地球并不会掉到哪里去,因为它已经在“三维时空的地面上了”。
首先一点,我们眼里的“上下左右前后”在浩瀚宇宙太空中并没有这样的概念,宇宙太空中没有方向的概念,或者说你认为上就是上,但我也可以认为是下,上下只有人们的主观概念,通常是在地球这个狭小的空间里才有的概念!
而事实上宇宙中的星球爱你不是我悬浮在太空中,它们真的是在“往下掉落”,比如,月球一直在往地球方向坠落,地球在往太阳方向坠落……
那么为什么就是坠落不了呢?地球为什么没有坠落但太阳上呢?
因为太阳是圆形的,同时地球坠落的弧度与太阳的弧度正好打成一致,所以地球不会坠落到太阳上,简单说就是因为速度让地球产生离心力,与坠落的万有引力平衡!
宇宙万事万物都在这种平衡中运作,而如果某些平衡被打破,就会真的坠落到某个星球上面,比如说太空中飞行的陨石彗星,如果被某颗星球的引力捕获而速度不够快,就会坠落到那颗星球上!
所以简单说,宇宙万事万物都不停地在坠落中,但运动不会让星球真的坠落到某颗星球上。
那么这种运动的初始力量来自何处?
如果追根溯源,就是宇宙大爆炸的力量,同时还有大爆炸发生后宇宙逐渐冷却形成的温度密度引力的不平衡,这种不平衡造成了某个区域开始有规律地运动,角动量守恒开始发挥作用,各种天体和星系形成了!
是什么力量让星球都悬浮在太空中,它们会掉下去吗?会掉到哪里去呢?
事实上包括银河系一起都在向某个方向掉落,但却永远都掉不到底,也许用无底洞来形容比较好!但在更小的范围比如太阳系范围来说却需要用另一个模式来理解,但无一例外都是引力在起着作用,比如地球与太阳之间的唯一纽带就是引力,那么太阳巨大的身躯为何还未将地球拖入太阳?当然很明显,与引力抗衡的是地球公转产生的离心力所平衡!
如果您有兴趣不妨可以计算下地球轨道上的太阳第一宇宙速度,公式很简单:
V= GM/R
G为万有引力常数,M为太阳质量,R为地球轨道的半径,以上参数都能查到;
计算后的环绕速度为:29740.317M,约合:29.74KM
很明显这个速度在近日点和远日点速度之间,因为地球公转速度为30.3KM/S,超过了地球公转的环绕轨道的速度,因此它跑出了一个近日点为1.471亿千米,远日点为1.52亿千米的椭圆轨道!而太阳系所有的天体都在轨道上运行,并没有脱离太阳系也没有掉落太阳,处在一种平衡状态!但太阳正在逐渐丢失质量,因此地球未来是逐渐远离太阳,而未来太阳的白矮星时代地球还将更远离太阳!
而太阳系却如上图这种好玩的模式以240KM/S的速度环绕银心公转,很明显这个速度既不会让太阳系逃逸也不会掉落银心黑洞!
但在更大规模的宇宙尺度上,银河系和本星系群一起正朝着拉尼亚凯亚超星系团的引力中心巨引源前进!不过在这2.5亿光年的距离上,宇宙膨胀的速度会让巨引源离开的速度超过4400KM/S,而银河系的速度才600-800KM/S,因此并不需要担心未来银河系会落入巨引源!
大海泛起的泡沫,是随波逐流的。因为,泡沫的运动状态是由无数个水分子对其的碰撞 所决定的。
如果我们只是一条小鱼 ,眼睛 只看见泡沫的浮动,就会不由自主地产生疑问 ,即水泡为什么会漂浮在太空中呢?
在经典力学产生之前,人们对天体在天空中的运动,也会产生出此类问题。当时盛行地心说,地球 为宇宙的中心,一切天体都围绕着地球做圆周运动。于是,人们将天体绕地球的运动,归结为天体的自然属性。
然而,到了经典力学时期,牛顿根据前人的观测和归纳,提出了万有引力公式,认为各种天体的运动,都是它们彼此相互吸引所决定的。于是,包括太阳 和地球在内的所有天体都是运动的,它们围绕着彼此的质心做相对运动。
牛顿建立的经典力学,是忽略了物理背景的理想物理学。该理论只考虑了物质的内在属性,却忽视了物体的外在环境。这就好像小鱼只看见了泡沫的运动,而没有感觉到海水 的存在。于是,小鱼将泡沫的运动完全归结为泡沫的属性。
此外,作为超距的万有引力,牛顿并没有给出其具体的物理机制,即没有告诉我们两个存在着一定距离的物体究竟是如何产生万有引力的。
进入到了二十世纪,由于普朗克常数h的被发现,以及该常数的量纲为粒子的角动量,说明在我们的宇宙中,充斥着不可再分的最小粒子——量子,由这些量子构成了宇宙的物理背景即量子空间。
稍后,卢瑟福利用阿尔法粒子撞击原子,发现只有极小比例的粒子被原子反弹了回来。这说明原子中的绝大部分空间都是空的,原子的体积仅只是由电子高速运动所形成的封闭体系,即物质是不实的。物质只是由高能量子所组成的封闭体系。
因此,我们的宇宙真的就如同是一个量子海洋,而物质仅只是由量子构成的泡沫。于是,物质的运动,除了其初始运动外,还会受到量子空间的影响,在量子空间中随波逐流。
如果量子空间是完全对称的,即其分布是平直和均匀的,则物质应该是静止地漂浮在量子空间中。
然而,如果量子空间因物质的存在,形成了不对称的分布,即形成了各种不同的场,则对于另一个物体来说,就需要由相应的运动来平衡量子空间的不对称。
这就是受力情况下的物体运动,对于该物体来说,其运动的状态是最大限度地与量子空间保持一致,即保持空间量子对其的对称性碰撞。
总之,天体之所以会在空中漂浮,以及不同的天体进行着相对的运动,是因为空间充满着不可再分的量子。而且,天体的自然运动状态,就是空间量子对其的碰撞被相互抵消的状态。
是什么力量让星球悬浮在太空?他们会掉下去吗?如果要掉下去,那么哪里是下面呢?我想起另一个问题。有异曲同工之妙,我都好好的站着,头朝上,那地球另一面的人岂不是头朝下了?太可怕了。可怕吗?一点不可怕,为什么,下面是指地球的中心。哦,解决了。地球上的人,人人都是头朝上了。那下面是指地心是人为规定吗?不是这是自然属性。万有引力决定的。下面是什么情况?是所有的上面的东西的最终归属。上面的东西或人都会往下掉,除非有物挡住了。为什么,是万有引力让这些东西往下掉。那万有引力会使这些星球往下掉吗?
有可能?那往哪里掉?掉到他们的万有引力中心。什么意思?那我们就慢慢来看,先看近的以我们地球为中心,有哪些星球。会掉?经过我们地球的一些流星。少男少女们不是喜欢对着流星雨来许愿吗?这就是一些很小的天体掉下来,在大气中燃烧划出的亮光。如果再大一点,比如小行星,掉下来就会酿成大灾难。如6500万年的小行星坠落导致恐龙的灭绝。那地球旁边的月亮为什么没有掉下来呢?那是因为月亮有个速度,他是以一定的速度围绕着地球运转。正好抵消了让他掉下来的引力。而他又没有速度达到很快,使得逃离地球。就这样月复一月,年复一年的围绕地球转,不离不弃!太阳系里其他行星的卫星也是这样绕着他们各自的行星转。
太阳系谁的引力最大?自然是太阳,太阳的质量占整个太阳系质量的99.86%,拥有绝对的权威,所有的行星大大小小,有卫星的还要各自带着自己的卫星一起绕着太阳转,还有彗星等一起转,要是谁偷懒,转的慢就会掉下来,掉到太阳上去。太阳决不客气!
那太阳呢?会有地方掉吗?有!哪里?银河系中心啊!太阳带着整个太阳系以每秒数百公里的速度狂奔。大约2亿年以上绕银河系一圈。这样才不至于掉落到银河系中心去。
而整个银河系也是绕着本星系群转。现在我们知道了,因为万有引力使得星球有可能掉下去(引力中心),因为有了公转的速度,又使得星球能完好无损地绕着其系统的中心公转!当然这期间自然有些不小心掉队。那就对不起了,掉下去了。如果又有谁由于某种原因突然跑的太快了。那可能是跑到外面去游荡了!
宇宙空间的神秘也不是说一两个问题就能说明白的,也许宇宙最高文明事实就存在,只是等着人类去开发了,发现一点就实用一点,等什么时候人类科学 探索 宇宙达到了一定的文明,估计科学就要进入神学了,但目前其码要知道整个宇宙都是在运动中的,忙的很,各大星团围绕着谁公转都是有规定的,而各行星围绕着谁公转也是有指定的,而且都分妙不差,速度也是根据离心力的自转及引力的能量而量身制作的,所以都有快有慢,反正比飞机的速度快。
比如,银河系围绕着宇宙中心在公转,绕一圈估计要十亿年,而仙女星团围绕着银河系公转,绕一圈大约要2.5亿年,太阳系围绕着仙女星团公转,绕一圈估计要50O万年,而八大行星都围绕着太阳系公转,其中的地球围绕着太阳公转,绕一圈是一年365天,而自转一圈是一天一夜,24小时,这里只说个大概,科学家研究的才有准确时间,可以说分秒不差,所有的运转还能保持长久,几十亿年是有了吧,以上说明什么呢,就是说宇宙内所有星球都不会落到哪去,而且都在自己规定的轨道中运行着呢。
以地球为例,如果地球要往下掉,它只会掉进太阳当中去,然后成为太阳的一部分。
事实上太空当中是没有方向的,因为方向的产生的原因是引力,引力的指向就是所谓的下面。
例如地球的引力是指向地球中心的,这个引力会将所有的物体都拉向地面,而引力指向相反的方向就是所谓的上面,于是上下的概念就这么产生了。
那么同样的道理,太阳系的引力是指向太阳中心的,那么地球之所以没有掉进太阳里面,是因为地球无时无刻都在公转,而公转产生的离心运动可以和太阳的引力达成平衡。
所以天上的那些星球并不是悬浮在太空当中,而是各自绕所在的恒星高速运动,否则它们就会被恒星的引力所吞噬。
然后恒星也是一样的,银河系的中心存在一些黑洞,这些黑洞的引力将诸多的恒星束缚在自己的周围,那么包括我们的太阳在内,诸多的恒星都在围绕银河系的中心进行旋转。
例如太阳的公转速度大约在220公里每秒,以这个速度绕银河系一周大约需要2.5亿年左右,考虑到太阳系的寿命大约在50亿年左右,所以太阳已经绕银河系公转20圈了.......
是什么力量让地球悬浮在太空中,是宇宙中恒星每颗相距千万公里,有的多有的少一点,是根据恒星大小而定,恒星距恒星之间都有推力,这些恒星均匀的排布宇宙中,如果宇宙中有一颗恒星移动,整个宇宙中的恒星全动,是任何一个恒星都不能随便移动,恒星又对自己管辖的行星都有保护力,保护着行星常久围着自己转动,不能远,也不能近,永远保持这个距离,这也是地球的悬浮力。
三个问题:什么力量让星球悬浮?它们会掉下去吗?会掉到哪里去?
答: 所有星球都不是悬浮在太空之中,也不会掉下去,更不会掉到哪里去。 因为宇宙没有上下之分,也没有东西南北中, 这就是答案。
那么, 它们到底是以什么形式存在呢? 如果牵强的说中心,那么 中心就是宇宙大爆炸之初的那个极点 。以宇宙形成之初的极点为中心,向外以极高的速度膨胀,就 形成一个球体的宇宙,而这个球体宇宙只有中心没有方向。 请问它的东西南北和上下,你怎么划分?你能划分得了吗?
所以,(1)它们不是悬浮,是受大爆炸巨大力的推动, 以中心的反方向高速移动。 (2)因为它们 一直向外飞奔,又有极大的力推动,不可能再掉下来。(原来的极点)
(3)它们不会掉到哪里去,因为大爆炸的力量是无穷的,会一直以中心向外的方向高速移动,这就是答案。
如果 牵强的说, 是什么力量让星球悬浮、能不能掉下来、能掉到哪里去的话? 那也只能是相对而言的,比如我们的太阳系。
简单的说,太阳的巨大引力,和围绕它旋转的天体,是因为太阳的引力,和太阳系内的天体的运行速度,达到了一个相对平衡,使得它们即跑不掉,也不会被太阳吸引过来,我们 看上去就好像它们悬浮在空中,也可以说是两个力量的平衡。
当它们的速度逐渐慢下来, 就会失去了平衡,最终就会真正掉下来, 当然是 掉到太阳上,和太阳融为一体。这就问题的答案。 欢迎各位条友有更多见解。
我们以太阳系为例,其实星球之间的引力不仅仅是为了保持各自的轨道,它是一种作用于宇宙中所有物质的力。这就是牛顿万有引力理论的基础。物体的质量越大,其周围其他物体的引力就越大。我们太阳系的所有天体都受到太阳引力的影响。
然而,太阳只是我们星系中数千亿颗恒星中的一颗,而这些恒星又是星系之一,所以星系与星系之间也有引力作用。其实我们的太阳系,包括其他的恒星系也都是移动的,太阳系每隔2.3亿年左右就绕银河系中心旋转一次。
爱因斯坦还有一种解释引力的看法,他的广义相对论指出,引力其实不是一种力,而是时空中的曲率,或者说这是时空扭曲的一种体现。这意味着像地球这样的物体实际上是沿着一条直线行进,因为物体总是在两点之间寻求最短的距离,但由于时空中的引力曲线,直线路径是球形的。
地球运行轨迹是怎样的
地球运行轨迹是怎样的,我们的认知里,好像地球在宇宙中的轨迹一直都比较复杂,一方面在围绕太阳进行公转,另一方面又自传,而且太阳的引力还吸引地球围绕银河系转动,那么地球运行轨迹是怎样的?
地球运行轨迹是怎样的1地球的运动有许多种,其中最显著的是自转和公转。
一、地球自转的特点
地球绕其自转轴的旋转运动叫做地球自转。地球自转的特点可以从方向、周期和速度三个方面去描述。
1、方向:从不同的角度俯瞰地球,看到的地球自转方向是不一样的:从赤道上空看,自西向东;从北极上空看,逆时针方向;从南极上空看,顺时针方向。
2、周期:地球自转一周的单位是1日。由于在计算自转周期时,选定的参考点不同,一日的时间长度和名称略有差别。如果以距离地球遥远的同一恒星为参考点,则一日的时间长度为23时56分4秒(地球自转360°),叫做恒星日。如果以太阳为参考点,则一日的时间长度是24小时(地球自转约361°),叫做太阳日。我们平时用的时间是太阳日,恒星日可用于天文学研究等方面。
3、速度:根据地球自转的周期,可以知道地球自转的角速度约为15°/时,地球表面除南北两极点外,任何地点的自转角速度都相同。而地球自转的`线速度,则由于纬度的不同而有差异。线速度由赤道向两极递减,纬度60°地区的线速度约为赤道地区的一半。两极的角速度和线速度都为0。
二、地球公转的特点
地球绕太阳的运动叫地球公转。地球公转的特点也可以从方向、周期和速度三个方面去描述。
1、方向:同地球自转方向一致,地球公转的方向也是自西向东。
2、周期:地球公转一周的时间单位是1年,其长度为365日5时48分46秒(回归年)。
3、速度:地球公转轨道是近似正圆的椭圆,太阳位于椭圆的一个焦点上(见上图)。每年的1月初地球距离太阳最近,这个位置叫近日点。每年的7月初,地球距离太阳最远,这个位置叫远日点。近日点公转速度快些,远日点公转速度慢些。
地球运行轨迹是怎样的2地球围绕太阳运行和月球围绕地球运行的轨道都可以近似地看做是圆形。但与太阳本身的运动叠加起来,地球的轨道和月球的轨道就都成为螺旋线了。
太阳与太阳系全体成员一起,围绕着银河系中心运行。但由于它的运行轨道直径非常大,在考查三者同时在空间中的运动时,可以把太阳的运行轨迹看做是一条直线。具体的运动方向是向着武仙座中某一点的方向。
太阳是一个巨大而炽热的气体星球。知道了日地距离,再从地球上测得太阳圆面的视角直径,从简单的三角关系就可以求出太阳的半径为69、6万千米,是地球半径的109倍。由此可以算出太阳的体积为地球的130万倍。
扩展资料:
太阳和其它天体一样,也在围绕自己的轴心自西向东自转,但观测和研究表明,太阳表面不同的纬度处,自转速度不一样。在赤道处,太阳自转一周需要25、4天,而在纬度40处需要27、2天,到了两极地区,自转一周则需要35天左右。这种自转方式被称为“较差自转”。
因为地球自西向东旋转,而地磁场外部是从磁北极指向磁南极(即南极指向北极),所成的环形电流与地球自转的方向相反,所以是带负电的。
月球的自转与公转的周期相等(称为潮汐锁定),因此月球始终以同一面朝向着地球。地球海洋潮汐的产生主要是由于月球引力的作用。
由于地球海洋的潮汐作用力与地球自转的方向相反,地球的自转总是受到一个极其微弱的作用力在给地球自转“刹车”,长期积累下来,有充分的证据表明,地球的自转周期越来越慢,一天的时间极其缓慢地增长,大约几年增加1秒。
由于地球的反作用力,使月球缓慢地距离地球越来越远,每一年远离地球大约3、8厘米。月球与太阳的大小比率与距离的比率相近,使得它的视大小与太阳几乎相同,在日食时月球可以完全遮蔽太阳而形成日全食。
地球运行轨迹是怎样的3科学家预测太阳其实是以每小时 7 万公里的速度,在银河系中运行。
它就是像颗彗星一样运动,旁边带着八大行星。严格而言,地球的公转轨迹是无止境的螺旋。所以,我们每时每刻都在不停地旋转中,是不是很不可思议呢?
月球上看地球会恐惧?
太阳系中,离地球最近的天体就是月球啦!
在地球上看月亮的时候,月亮又圆又亮,感觉非常的美好!
同时,我们也对月亮寄予了很多情感,如“海上生明月,天涯共此时”,“举头望明月,低头思故乡”,等等。
但是,如果在月球上看地球,看到的不仅是美好,还有一丝丝“恐惧”。
这是什么原因呢?
到现在为止,总共有12人,从月球表面亲眼瞭望过地球。准确来说,从月球上瞭望地球有一种不现实感。
因为宇航员在地球上习惯了每天东升西落的太阳,而在月球上,太阳走得很慢,大约要花7天左右的时间从月平线上升到头顶,又要花大约7天时间慢慢落到月平线以下。
另外,地球比月亮看起来要亮50倍以上,而且面积是月亮的16倍,更奇怪的是地球在月亮的天空中一动不动。无论你等多久,地球在月球的天空中位置是不变的。
这是因为月球被地球潮汐锁定了,这是一种地球潮汐力对月球自转的拖动效应所致,导致月球自转会越来越慢,直至最终与月球绕地球公转同步。
含情脉脉的地球,盯了地球看很多年了,这才会有那句“月亮代表我的心”。
作为宇航员来说,这些结果他们是早已知晓的。在他们看来,从月球上瞭望地球更多的是感慨,感慨之后则是深深的不安。
地球在黑暗无边的宇宙中,绕着太阳一直转了40多亿年,生命从地球上诞生也已超30亿年,经过寒武纪生命大爆发,历经五次大灭绝,无数次中小型灭绝,最终才诞生出人类文明。
而在地球轨道附近,小行星熙熙攘攘,随时可能撞击地球,生命能在这个蓝色星球上繁衍生息这么久,已经算是奇迹。
这样的奇迹会持续多久,谁也不知道。
全站搜索