欢迎访问喜蛋文章网
你的位置:首页 > 故事 > 文章正文

为什么A&B.是摧毁世界最隐蔽最具有欺骗性的方式

时间: 2023-11-12 17:01:35 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 93次

为什么A&B.是摧毁世界最隐蔽最具有欺骗性的方式

求几个经典的悖论

列几个例子就行了,谢谢,最好比较经典的

(1)理发师悖论:1919年,罗素把他提出的集合论悖论通俗化如下:萨魏尔村有一位理发师,他给自己订下一条规则:他只给村子里自己不给自己刮胡子的人刮胡子。请问他该不该给自己刮胡子?

(2)苏格拉底悖论:苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。”

(3)纸牌悖论:纸牌悖论就是纸牌的一面写着:“纸牌反面的句子是对的。”而另一面却写着:“纸牌反面的句子是错的。”这是由英国数学家Jourdain提出来的。我们同样推不出结果来。

(4)上帝万能悖论:“如果说上帝是万能的,他能否创造一块他举不起来的大石头?”

(5)鳄鱼悖论:一条鳄鱼抢走了一个小孩,它对孩子的母亲说:“我会不会吃掉你的小孩?答对了,孩子还给你;答错了,我就吃了他。” 请问孩子母亲该如何回答才能保住孩子的性命

(6)老子悖论:“知者不言,言者不知。”是一条悖论,被白居易一语道穿。白居易在《读老子》里说道:“言者不知知者默,此语吾闻于老君。若道老君是知者,缘何自着五千文?”

扩展资料:

悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。

悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。

产生悖论的根本原因是把传统逻辑形式化、把形式逻辑普适性绝对化,即把形式逻辑当做思维方式。所有悖论都是因形式逻辑思维方式产生,形式逻辑思维方式发现不了、解释不了、解决不了的逻辑错误。所谓解悖,就是运用对称逻辑思维方式发现、纠正悖论中的逻辑错误。

性质

悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。

根源

悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化,即把形式逻辑当作思维方式。

用对称逻辑解“鳄鱼困境悖论”

一个鳄鱼偷了一个父亲的儿子,它保证如果这个父亲能猜出它要做什么,它就会将儿子还给父亲。如果这个父亲猜“鳄鱼不会将儿子还给他”,就会成为所谓的“悖论”:如果鳄鱼不还儿子,那么父亲就猜对了,鳄鱼就必须把孩子还给父亲,否则鳄鱼违背了诺言;如果鳄鱼将儿子还给他,那么父亲就猜错了,鳄鱼又违背了诺言。

解悖:鳄鱼“要做什么”是一种心理状态,鳄鱼“把孩子还给父亲”是一种行为,二者在时间上是前后衔接的两个阶段。同样,这个父亲猜“鳄鱼不会将儿子还给他”是鳄鱼心理状态,后来“鳄鱼将儿子还给他”是鳄鱼行为。

这个父亲猜“鳄鱼不会将儿子还给他”这种鳄鱼的心理状态和后来“鳄鱼将儿子还给他”这种鳄鱼行为之间同时存在并不矛盾——正是因为这个父亲猜对了鳄鱼的心理“不把儿子还给他”,所以鳄鱼为了履行诺言必须在行动上把儿子还给他。在这里对称逻辑通过限定时间范围,使语言的内容和语言的对象对称。

参考资料:百度百科-悖论

1、生日问题是指,如果在一个房间要多少人,则两个人的生日相同的概率要大于50%? 答案是23人。 这就意味着在一个典型的标准小学班级(30人)中,存在两人生日相同的可能性更高。对于60或者更多的人,这种概率要大于99%。

从引起逻辑矛盾的角度来说生日悖论并不是一种悖论,从这个数学事实与一般直觉相抵触的意义上,它才称得上是一个悖论。大多数人会认为,23人中有2人生日相同的概率应该远远小于50%。计算与此相关的概率被称为生日问题,在这个问题之后的数学理论已被用于设计著名的密码攻击方法:生日攻击。

2、唐吉诃德悖论是指记载在唐吉诃德小说中的一个涉及悖论的故事。桑丘·潘萨在他治理的岛上颁布一条法例,规定过桥的旅客必需诚实地表示自己的目的,否则就要接受绞刑。有一个旅客在见到桥上的告示后,宣称自己过桥是要接受绞刑的。

这使执法者感到为难:如果旅客的言论为真,则他应被释放并不得受绞刑,但如此一来旅客言论即变为假。如其言论为假,则他会被绞死,但如此一来其言论即变为真。该旅客被带到桑丘面前,而桑丘最后把他释放。

3、说谎者悖论,在哲学和逻辑学中,古典的说谎者悖论是指一个说谎者声称自己正在说谎:例如,声称:“我在说谎”或者“我所说的皆为假”。如果他确实在说谎,那么他所说的就是真的,但如果他所说的就是真的,那么他就是在说谎。

在“这个语句正在说谎”的悖论中,为了强化悖论,使悖论更经得起严格的逻辑分析,“说谎”的概念往往被“真假”的概念所取代,仅仅保留“说谎者”这一名称来指涉关于古典二值逻辑会推导出矛盾的悖论。

如果“这个语句为假”为真,那么这个语句为假,但是如果这个语句声称它为假,且它为假,那么它一定为真,如此一来悖论于焉成形。

4、祖父悖论是一种时间旅行的悖论,科幻故事中常见的主题。最先由法国科幻小说作家赫内·巴赫札维勒(René Barjavel)在他1943年的小说《不小心的旅游者》(Le Voyageur Imprudent)中提出。情景如下:

假如你回到过去,在自己父亲出生前把自己的祖父母杀死,但此举动会产生一矛盾的情况:你回到过去杀了你年轻的祖父,祖父死了就没有父亲,没有父亲也不会有你,那么是谁杀了祖父呢? 或者看作:你的存在表示,祖父没有因你而死,那你何以杀死祖父?

5、小城里的理发师放出豪言:他只为,而且一定要为,城里所有不为自己刮胡子的人刮胡子。但问题是:理发师该为自己刮胡子吗?如果他为自己刮胡子,那么按照他的豪言“只为城里所有不为自己刮胡子的人刮胡子”他不应该为自己刮胡子;但如果他不为自己刮胡子,同样按照他的豪言“一定要为城里所有不为自己刮胡子的人刮胡子”他又应该为自己刮胡子。

12条经典悖论——牡丹悖论上榜 (1)理发师悖论:1919年,罗素把他提出的集合论悖论通俗化如下:萨魏尔村有一位理发师,他给自己订下一条规则:他只给村子里自己不给自己刮胡子的人刮胡子。请问他该不该给自己刮胡子?
(2)梵学者的预言:印度预言家的女儿,在纸上写了一件事(一句话),让他父亲预言这件事在下午三点钟以前是否发生,并一个卡片上写“是”或“不”。此梵学者,在卡片上写了一个“是”字。他女儿在纸上写的一句话是:“在下午三点钟之前,你将写一个‘不’字在卡片上。” 梵学者发现,他被女儿捉弄了,无论他写“是”或“不”都是错的,他根本不可能预言对。
(3)意料之外的考试:他出现于20世纪40年代初。一位教授宣布:下周的某一天要进行一次“意料之外的考试”,并称没有一个学生能在考试的那天之前预测出考试的日期。一个学生“证明”,考试不会一周最后一天进行,如若不然,则倒数第二天就可以推测出来了。以次类推,考试不可能在任何一天进行。其错误是第一步,并不能推断出“考试不在最后一天进行”,他要这么推论,那么最后一天考试仍然是“意料之外的考试”。
(4)苏格拉底悖论:苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。”
(5)纸牌悖论:纸牌悖论就是纸牌的一面写着:“纸牌反面的句子是对的。”而另一面却写着:“纸牌反面的句子是错的。”这是由英国数学家Jourdain提出来的。我们同样推不出结果来。
(6)上帝万能悖论:“如果说上帝是万能的,他能否创造一块他举不起来的大石头?”
(7)鳄鱼悖论:一条鳄鱼抢走了一个小孩,它对孩子的母亲说:“我会不会吃掉你的小孩?答对了,孩子还给你;答错了,我就吃了他。” 请问孩子母亲该如何回答才能保住孩子的性命?
(8)老子悖论:“知者不言,言者不知。”是一条悖论,被白居易一语道穿。白居易在《读老子》里说道:“言者不知知者默,此语吾闻于老君。若道老君是知者,缘何自着五千文?”
(9)军规悖论:“第二十二条军规”是一条臭名昭著的军规。它规定神经失常的飞行员可以停飞,但同时又规定申请停飞者必须头脑清醒。试想,一个神经失常的人不能申请,必须飞行;而头脑清醒者又怎么能证明他是神经失常?这纯粹是一条欺骗性的悖论。
(10)牡丹悖论:“这里没有牡丹”这句话,在任何时间都是错误的。——你认为这句话对还是错?两难啊。理由嘛,很简单:因为,如果“这里有牡丹”,不能推出“这里没有牡丹”。如果“这里没有牡丹”,还是不能推出“这里没有牡丹”;既然这里连牡丹都没有,怎么能知道这里没有的就是牡丹呢?所以,“这里没有牡丹”是导致逻辑上自相矛盾的恒假命题,是悖论。这条悖论是本博客版主——您的忠实的朋友——程多德于1997年无意间发现的!牡丹悖论上榜理由:它是涉及否定形式的最基本的悖论,它“简单得不能再简单,具体得不能再具体,抽象得不能再抽象”。
(11)芝诺悖论:现在人们广为流传的芝诺悖论﹝Zeno's Paradoxes﹞都是关于运动的,即(1)阿基里斯和乌龟赛跑;(2)两分法悖论;(3)飞矢不动;(4)运动场问题等。其中「阿基里斯和乌龟赛跑」是最著名的一个。乌龟和阿基里斯﹝Achilles﹞赛跑,乌龟提前跑了一段──不妨设为100米,而阿基里斯的速度比乌龟快得多──不妨设他的速度为乌龟的10倍,这样当阿基里斯跑了100米到乌龟的出发点时,乌龟向前跑了10米;当阿基里斯再追了这10米时,乌龟又向前跑了1米,……如此继续下去,因为追赶者必须首先到达被追赶者的原来位置,所以被追赶者总是在追赶者的前面,由此得出阿基里斯永远追不上乌龟。
(12)“说谎者悖论”:在古希腊美丽众多的传说中,有这样一个有趣的故事。大约在公元前六世纪,古希腊的克里特岛上住着一位名叫厄匹门尼德的人。当他幼年时,有一天,他跑到一座荒凉的小山丘上玩耍。玩累了以后,就跑到一个常去的山洞休息。不料,他在山洞里一下子睡着了,这一睡竟睡了57年。他醒来后,发现自己已经成为一位大学者,谙熟哲学和医学,并能预知将来要发生的种种事件。于是,岛上的人就称他为“先知”。据说,他喜欢和别人讨论一些难以解答的问题,借以显示自己有非凡的智慧。一天,他在和别人讨论关于克里特人是否诚实的问题时,厄匹门尼德断言:“克里特岛上的人都是说谎者。”“先知”的这句话极大地困惑着克里特岛上的居民。这句话究竟是真的,还是假的?结果他们发现,要确定这句话的真假几乎是不可能的。你知道这是为什么吗?
1.电车难题(The Trolley Problem)

“电车难题”是伦理学领域最为知名的思想实验之一,其内容大致是:一个疯子把五个无辜的人绑在电车轨道上。一辆失控的电车朝他们驶来,并且片刻后就要碾压到他们。幸运的是,你可以拉一个拉杆,让电车开到另一条轨道上。但是还有一个问题,那个疯子在那另一条轨道上也绑了一个人。考虑以上状况,你应该拉拉杆吗?

2.空地上的奶牛(The Cow in the field)

认知论领域的一个最重要的思想实验就是“空地上的奶牛”。它描述的是,一个农民担心自己的获奖的奶牛走丢了。这时送奶工到了农场,他告诉农民不要担心,因为他看到那头奶牛在附件的一块空地上。虽然农民很相信送奶工,但他还是亲自看了看,他看到了熟悉的黑白相间的形状并感到很满意。过了一会,送奶工到那块空地上再次确认。那头奶牛确实在那,但它躲在树林里,而且空地上还有一大张黑白相间的纸缠在树上,很明显,农民把这张纸错当成自己的奶牛了。问题是出现了,虽然奶牛一直都在空地上,但农民说自己知道奶牛在空地上时是否正确?

3.定时炸弹(The Ticking Time Bomb)

如果你关注近几年的政治时事,或者看过动作电影,那么你对于“定时炸弹”思想实验肯定很熟悉。它要求你想象一个炸弹或其他大规模杀伤性武器藏在你的城市中,并且爆炸的倒计时马上就到零了。在羁押中有一个知情者,他知道炸弹的埋藏点。你是否会使用酷刑来获取情报?

4.爱因斯坦的光线(Einstein’s Light Beam)

爱因斯坦著名的狭义相对论是受启于他16岁做的思想实验。在他的自传中,爱因斯坦回忆道他当时幻想在宇宙中追寻一道光线。他推理说,如果他能够以光速在光线旁边运动,那么他应该能够看到光线成为“在空间上不断振荡但停滞不前的电磁场”。对于爱因斯坦,这个思想实验证明了对于这个虚拟的观察者,所有的物理定律应该和一个相对于地球静止的观察者观察到的一样。

5. 特修斯之船(The Ship of Theseus)

最为古老的思想实验之一。最早出自普鲁塔克的记载。它描述的是一艘可以在海上航行几百年的船,归功于不间断的维修和替换部件。只要一块木板腐烂了,它就会被替换掉,以此类推,直到所有的功能部件都不是最开始的那些了。问题是,最终产生的这艘船是否还是原来的那艘特修斯之船,还是一艘完全不同的船?如果不是原来的船,那么在什么时候它不再是原来的船了?哲学家Thomas Hobbes后来对此进来了延伸,如果用特修斯之船上取下来的老部件来重新建造一艘新的船,那么两艘船中哪艘才是真正的特修斯之船?

6.伽利略的重力实验(Galieo's Gravity E)

为了反驳亚里士多德的自由落体速度取决于物体的质量的理论,伽利略构造了一个简单的思想实验。根据亚里士多德的说法,如果一个轻的物体和一个重的物体绑在一起然后从塔上丢下来,那么重的物体下落的速度快,两个物体之间的绳子会被拉直。这时轻的物体对重物会产生一个阻力,使得下落速度变慢。但是,从另一方面来看,两个物体绑在一起以后的质量应该比任意一个单独的物体都大,那么整个系统下落的速度应该最快。这个矛盾证明了亚里士多德的理论是错误的。

7.猴子和打字机(Monkeys and Typewriters)

另一个在流行文化中占了很大分量的思想实验是“无限猴子定理”,也叫做“猴子和打字机”实验。定理的内容是,如果无数多的猴子在无数多的打字机上随机的打字,并持续无限久的时间,那么在某个时候,它们必然会打出莎士比亚的全部著作。猴子和打字机的设想在20世纪初被法国数学家Emile Borel推广,但其基本思想——无数多的人员和无数多的时间能产生任何/所有东西——可以追溯至亚里士多德。

8. 中文房间(The Chinese Room)

“中文房间”最早由美国哲学家John Searle于20世纪80年代初提出。这个实验要求你想象一位只说英语的人身处一个房间之中,这间房间除了门上有一个小窗口以外,全部都是封闭的。他随身带着一本写有中文翻译程序的书。房间里还有足够的稿纸、铅笔和橱柜。写着中文的纸片通过小窗口被送入房间中。根据Searle,房间中的人可以使用他的书来翻译这些文字并用中文回复。虽然他完全不会中文,Searle认为通过这个过程,房间里的人可以让任何房间外的人以为他会说流利的中文。

9. 薛定锷的猫(Schrodinger’s Cat)

薛定锷的猫最早由物理学家薛定锷提出,是量子力学领域中的一个悖论。其内容是:一只猫、一些放射性元素和一瓶毒气一起被封闭在一个盒子里一个小时。在一个小时内,放射性元素衰变的几率为50%。如果衰变,那么一个连接在盖革计数器上的锤子就会被触发,并打碎瓶子,释放毒气,杀死猫。因为这件事会否发生的概率相等,薛定锷认为在盒子被打开前,盒子中的猫被认为是既死又活的。

10.缸中的大脑(Brain in a Vat)

想象有一个疯狂科学家把你的大脑从你的体内取出,放在某种生命维持液体中。大脑上插着电极,电极连到一台能产生图像和感官信号的电脑上。因为你获取的所有关于这个世界的信息都是通过你的大脑来处理的,这台电脑就有能力模拟你的日常体验。如果这确实可能的话,你要如何来证明你周围的世界是真实的,而不是由一台电脑产生的某种模拟环境?
当人到达乌龟出发点时.乌龟向前爬动到了A点.当人到达A点时.乌龟又向前爬动到了B点........但是乌龟完成 A点到B点的距离所需的时间 人在同样的时间可能已经越过了B点(前提是人的速度大于 乌龟的速度.否则你所说的就是事实--要么无穷接近 要么离的更远)

有关时间的悖论,最著名的是“芝诺悖论”。
芝诺的运动论辨全部得自亚里士多德在《物理学》中的转述,有四个:
1、二分法。物体在到达目的地之前必须先到达全程的一半,这个要求可以无限的进行下去,所以,如果它起动了,它永远到不了终点,或者,它根本起动不了。
2、阿喀琉斯(一译阿基里斯)。若慢跑者在快跑者前一段,则快跑者永远赶不上慢跑者,因为追赶者必须首先跑到被追者的出发点,而当他到达被追者的出发点,慢跑者又向前了一段,又有新的出发点在等着它,有无限个这样的出发点。
芝诺当然知道阿基里斯能够捉住海龟,跑步者肯定也能跑到终点。它们错在哪儿?
类似阿基里斯追上海龟之类的追赶问题,我们可以用无穷数列的求和,或者简单建立起一个方程组就能算出所需要的时间,那么既然我们都算出了追赶所花的时间,我们还有什么理由说阿喀琉斯永远也追不上乌龟呢?然而问题出在这里:我们在这里有一个假定,那就是假定阿喀琉斯最终是追上了乌龟,才求出的那个时间。但是芝诺的悖论的实质在于要求我们证明为何能追上。
使用无穷数列求和这解法,其解答思路与悖论的表述相似,就是把一段一段跑的距离加起来。这些数列虽然有无限多项,但其总和并不是一个无穷大的数目。但是问题是,即便综合是一个有限的数,但是它却是由无限多的数(无限多的步)组成的,作为一个活生生的人,阿基里斯如何来实践着无限多个的步骤呢?
时间悖论最早是在科幻小说中提到的。这个悖论的必要前提是:人类可以随心所欲的控制三维空间之后的“第四维”——时间,能够回到过去或者将来。
在这个前提下,有多种“时间悖论”的表达方式。
最为著名的“时间悖论”一般称为“祖父悖论”:
某人回到过去,在自己父亲出生前杀害了自己的祖父。既然祖父已死,就不会有其父亲,也不会有他;既然他不存在,又怎么能回到过去,杀死自己的祖父呢?
与之对应的,既然有回到过去的悖论,也会有到达将来的“先知悖论”,表达如下:
某人到达未来,得知将发生的不幸结果A,他在现在做出了避免导致结果A的行动,到达结果B。那么结果A在未来根本没有发生,他又是如何得知结果A的呢?(既A与B不可能相遇的悖论)
就严肃的物理学理论而言,爱因斯坦的《相对论》指出,的确存在不违背已知的物理法则改变时间的可能性。但更多的只是一种科学幻想。为了解决“时间悖论”,也有多种假设,比如比较盛行的“平行宇宙”假说,认为我们的这个世界在宇宙中还有许多相似的“克隆世界”,当某人回到过去时,他就进入了另一个平行世界(即未来因为他的行动已经改变的世界),再也不可能回到原来的世界。

威胁当今世界和平稳定的主要根源是

威胁世界和平与稳定的主要根源是威胁世界和平与稳定的主要根源威胁世界和平与稳定的主要根源是威胁世界与稳定的主要根源威胁社会和平与稳定的主要根源威胁世界和平与发展的根源当今威胁世界和平的主要根源威胁世界和平发展的主要根源威胁世界和平和稳定的主要根源是威胁世界和平的根源
辨析题:恐怖主义是威胁世界和平与稳定的根源? 我来回答
  错误
  恐怖主义是威胁世界和平与稳定的因素但不是威郸世界和平与稳定的根源
    造成世界不安宁的因素有哪些? 民族、宗教、领土、资源等因素引发的局部冲突;各种分裂势力、恐怖主义势力和宗教极端势力;霸权主义。其中,霸权主义是威胁世界和平与发展的主要根源。

威胁世界和平的主要根源是()造成南北问题(发展问题)的根本原因是()我来回答
  威胁世界和平的主要根源是霸权主义和强权政治
  造成南北问题(发展问题)的根本原因是不合理的世界经济秩序

恐怖主义是威胁世界和平与稳定的主要根源我来回答
  错,强权政治、霸权主义与贫富差距扩大才是威胁世界和平与稳定的根源,恐怖主义是由于贫穷引起的

当今世界,威胁世界和平和阻碍发展的主要根源是什么我来回答
  当今世界,威胁世界和平和阻碍发展的表现有很多,例如宗教思想的冲突、区域利益的冲突等等,如果一定要说核心根源是霸权主义和强权政治,你看,世界主要军事冲突基本都和美国有关,美国为了把控石油主导权,打了伊拉克,当时的理由是伊拉克有核武器,现在找了几年没找到,后来美国总统说这是个误会。

在当代威胁世界和平与发展的主要根源是什么我来回答
  各国家的意识形态不同(比如社会主义和资本主义)
  历史遗留的仇恨(比如中国和日本)
  利益冲突(美国和俄罗斯)
  宗教信仰不同或分歧(什叶派和逊尼派)

威胁世界和平与发展的主要根源是我来回答
  答案D
  A、B、C不合题意。
  参考:[www.zuoyebao.com]

为什么说霸权主义,强权政治威胁和平的主要根源? 我来回答
  学者们分析了人类对战争根源理论的探索历程。普遍认为,在西方国际政治理论中,关于战争根源的观点有几十种,但是,这些理论都未能科学地揭示战争的根源。只有马克思主义才真正解决了这一问题。马克思主义认为,战争是人类社会发展到一定阶段的产物,是随着生产资料私有制的出现、社会分化为对立的阶级之后才产生的一种社会历史现象,是民族和民族、国家和国家、阶级和阶级、社会集团和社会集团之间相互斗争的最高形式。列宁根据帝国主义经济政治发展不平衡的规律,进一步论证了战争的根源。他指出:“现代战争产生于帝国主义。”第二次世界大战结束后,斯大林继续坚持了列宁的观点,指出资本主义的固有矛盾必将随时导致新的冲突,并引起世界战争。毛泽东曾对第二次世界大战后出现的这些新情况进行过多方思索,他指出:“美国在世界上有利益要保护,苏联要扩张,这个没法子改变,在阶级存在的时代,战争是两个和平之间的现象。”毛泽东已经开始思考美苏争霸对世界历史的影响。邓小平根据70年代以后美苏两霸激烈争夺的形势,一针见血地指出:“霸权主义是世界最危险的战争策源地,是危害世界和平安全和稳定的根源。”“现在威胁世界和平的主要是霸权主义。”“当今世界不安宁来源于霸权主义的争夺”。“战争是同霸权主义联系在一起的。”他说:“我们讲的战争不是小打小闹,是世界战争。打世界大战只有两个超级大国有资格,别人没有资格,……所以,反对超级大国的霸权主义也就是维护世界和平。”(《邓小平文选》,1版,第3卷,104页。)后来,他又一次指出,现在有能力、有资格发动世界大战的只有苏美两个国家。(参见上书,233页。)在这些论述中,邓小平不仅谴责和批评美国的霸权主义和强权政治,而且也揭示出社会主义国家如果搞霸权主义,也会成为战争的主要策源地。苏联的解体结束了两个超级大国对峙争霸的局面。但是,霸权主义和霸权主义的影响依然存在,仍然是世界和平的最大威胁。
  邓小平提出了“霸权主义是战争根源”的论断,丰富发展了马克思主义关于战争观的理论。有的学者认为,邓小平的这一思想,有着丰富的内涵:第一,超级大国推行的霸权主义是当代世界战争的主要根源。第二,地区霸权主义是引发战争的另一个重要根源。第三,实行社会主义制度的国家,如果在对外政策上违背国际准则和人民的意愿,推行霸权主义,同样会成为引发战争的根源。
  冷战结束以来,以美国为首的西方国家以人权作为推行强权政治、霸权主义与“和平演变”的突破口,对发展中国家展开“人权外交”。国际人权斗争的较量成为反对霸权主义的新内容。正是在与西方国家“人权外交”的斗争中,邓小平提出了富有中国特色的人权思想,丰富了反对霸权主义的理论。学者们将邓小平的人权思想具体概括为:第一,批驳了西方国家“人权无国界”的谬论,揭示了社会主义人权与资本主义人权的本质区别。社会主义人权是以人民群众为人权主体的,讲的是多数人的人权,它具有普遍性、广泛性、公平性和真实性;资本主义人权是以资产阶级为人权主体的,讲的是少数剥削者的特权,它具有虚伪性、欺骗性。第二,揭露了西方国家的“人道主义干涉”论的实质,指出“搞强权政治的国家根本就没有资格讲人权”。世界上最不讲人权的国家恰恰是那些自诩为“人权卫士”的霸权主义国家,它们才是伤害和践踏世界人权的罪魁祸首。第三,抨击西方国家“人权高于主权”的谬论,提出“国权比人权重要得多”的论断。一个国家如果丧失了主权,没有国家的独立、民族的尊严,就根本谈不上什么人权;国际领域的人权保护也依赖于各主权国家的共同认可和协同努力。第四,从和平与发展的时代主题出发,强调发展权的重要性。第五,从中国的......余下全文>>

和平与发展为什么会成为当今世界的两大主题? 10分我来回答
  一,和平与发展成为时代主题的客观依据
  (1)当今世界和平与发展已成为时代主题。邓小平提出和平与发展成为时代主题的主要依据是:①科技与革命迅猛发展,科技在经济和社会发展中的作用越来越大,以科技和经济发展为中心的综合国力竞争日益突出,和平与发展也就成为当今国际形势发展的主流和基本趋势;②冷战后,发展成为包括发达国家在内的世界各国政府和人民的共同愿望,以经济和科技竞争为中心的和平竞争取代武力对抗;③战争与和平的力量对比方面,和平力量超过战争的力量,发生世界大战的因素基本不复存在。但是进入新世纪以来世界上不稳定和不确定因素明显增加,天下仍不太平。国际力量对比严重失衡的状况没有根本改变,霸权主义、强权政治在国际政治、经济和安全领域依然存在并有新的发展。维护世界和平,促进共同发展必须反对霸权主义。
  (2)世界和平是促进发展的条件。人类历史的经验一再证明,没有和平就没有发展;和平是人类进步与发展的前提和保障。所以,世界和平是促进发展的前提条件。正是从这个意义上说维护世界和平是当今世界的根本问题。各国的共同发展是保持世界和平的重要基础。要保持世界的持久和平就必须消除过大的南北差距,促进各国的共同发展。促进各国的共同发展是当今世界的核心问题。
  二,用哲学原理分析和平与发展仍然是时代主题
  (1)和平与发展两大问题一个也没有解决,但和平与发展仍然是当今世界的时代主题。
  冷战结束后,影响和平与发展的因素在不断增加,恐怖主义危害上升,传统安全威胁和非传统安全威胁相互交织,霸权主义又有新的表现,南北差距进一步扩大,因边界、宗教、领土导致的局部冲突时起时伏。但是,主要矛盾和矛盾的主要方面决定事物的性质和发展的基本趋势。看问题要看主流,不能看支流;看总体和全局,不能为局部和支流所迷惑。当今世界,虽然和平与发展两大问题一个都没有解决,但是总体和平、局部战乱;总体缓和、局部紧张;总体稳定、局部动荡是世界局势的基本特点,所以,和平与发展仍是当今世界的时代主题。(2)霸权主义是指某些国家对外关系中奉行的践踏别国主权,违反公认的国际关系准则的政策和行为。霸权主义的理论基础是强权政治。当今世界的强权政治虽然不再赤裸裸地主张弱肉强食,但凭借势力,构成强权,力图按本国利益和意志支配别人、主导世界,仍然是当今霸权主义和强权政治的基本点,决不可能是什么仁慈霸权和新型帝国。威胁世界和平、阻碍世界共同发展的主要根源,是西方国家推行的霸权主义、强权政治以及不合理的国际经济、政治旧秩序。所以,维护世界和平,促进共同发展的正确途径,是反对西方的强权政治和霸权主义,在当前尤其是要反对美国的单边主义外交政策;同时,改革不合理的国际经济政治旧秩序,建立国际经济、政治新秩序。
  三,美国霸权主义的新变化、新表现“先发制人”
  新表现主要是:①在国际政治格局上,由两极争霸变为一极称霸、单极霸权、单边外交,更加霸道,连其欧洲盟国都难以忍受;②在理论上,美国的新霸权主义鼓吹其维护国际秩序的责任,以全面推行西方价值观为重要内容,强调其霸权主义所具有的道德基础与合法依据;③在实质上,日益露骨地侵犯别国主权,主要是富国、强国、大国欺负穷国、弱国、小国;④在形式上,美国新霸权主义重视运用外交手段、经济制裁、军事干预等多种形式。军事干预不再以武力征服、占领土地为目标,甚至忌讳“占领”的提法,而是通过军事干预来惩罚以致强制改造那些违反美国霸权秩序和西方人权主张的国家,并按照美国的价值观来建立新的国际秩序;⑤其最终目的是实现美国自身在政治、经济上最大限度的安全和霸权利益,永远保持美国领导整个世界。
  四,美国“先发制人”的打击......余下全文>>

在当今世界,霸权主义一直是威胁世界和平与发展的主要根源,霸权主义的核心思想是 [ ] A.我来回答
  D

现阶段威胁世界和平的因素有哪些 我来回答
  某些大国的霸权主义、强权政治,国家间经济发展的不平衡,恐怖主义等
威胁当今世界和平稳定的主要根源,就是那些嗯不稳定的国家以及他们的种族冲突。
我觉得威胁当今世界和平稳定的主要根源,一个是恐怖主义,还有一个就是新殖民主义就是一些国家塔为了维护自己的强权地位,不择手段。
威胁当今世界和平稳定的主要根源是新冠病毒,新冠病毒打乱了社会秩序,使全球的经济蒙受重大损失。
威胁当今世界,和平稳定主要根源就是资本主义国家政治经济发展的不平衡,霸权主义保护主义,尤其是像美国这样的国家,不遵守规则。

a&& b的最后的结果是什么

a&&b,a和b的逻辑与的值。是C语言里的一种逻辑表达式。&&表示的意思是数学中的逻辑与操作。

在C语言中非0则是1,因为题目中a=4,b=5,所以a&&b的结果为1。所以题目中x的最后结果为1。计算过程a&&b=1,c<‘B’=1,x=1&&1,所以x=1。

扩展资料:

C语言的逻辑运算符

逻辑与运算符优先级第 13级,“&&”逻辑与运算符。结合性从左到右。当第一个操作符为0时,可以不执行运算符后面的表达式。

逻辑或运算符 优先级第14 级,“ || ”逻辑或运算符。结合性从左到右。

C语言主要特点

简洁的语言,C语言包含的各种控制语句仅有9种,关键字也只有32 个,程序的编写要求不严格且以小写字母为主,对许多不必要的部分进行了精简。

具有结构化的控制语句,C语言是一种结构化的语言,提供的控制语句具有结构化特征,如for语句、if⋯else语句和switch语句等。可以用于实现函数的逻辑控制,方便面向过程的程序设计。

丰富的数据类型,C语言包含的数据类型广泛,不仅包含有传统的字符型、整型、浮点型、数组类型等数据类型,还具有其他编程语言所不具备的数据类型,其中以指针类型数据使用最为灵活,可以通过编程对各种数据结构进行计算。

丰富的运算符,C语言包含34个运算符,它将赋值、括号等均是作运算符来操作,使C程序的表达式类型和运算符类型均非常丰富。

可对物理地址进行直接操作C语言允许对硬件内存地址进行直接读写,以此可以实现汇编语言的主要功能,并可直接操作硬件。

代码具有较好的可移植性,C语言是面向过程的编程语言,用户只需要关注所被解决问题的本身,而不需要花费过多的精力去了解相关硬件。

且针对不同的硬件环境,在用C语言实现相同功能时的代码基本一致,不需或仅需进行少量改动便可完成移植。

可生成高质量、目标代码执行效率高的程序,与其他高级语言相比,C语言可以生成高质量和高效率的目标代码,故通常应用于对代码质量和执行效率要求较高的嵌入式系统程序的编写。

缺点

C语言的缺点主要表现在数据的封装性上,这一点使得C在数据的安全性上有很大缺陷,这也是C和C++的一大区别。

C语言的语法限制不太严格,对变量的类型约束不严格,影响程序的安全性,对数组下标越界不作检查等。对用C语言的人,要求对程序设计更熟练一些。

C语言是一种结构化语言,它有着清晰的层次,可按照模块的方式对程序进行编写,十分有利于程序的调试。

而且C语言的处理和表现能力都非常的强大,依靠非常全面的运算符和多样的数据类型,可以轻易完成各种数据结构的构建,通过指针类型更可对内存直接寻址以及对硬件进行直接操作。

参考资料来源:百度百科-C语言

参考资料来源:百度百科-C语言运算符

什么是哥德巴赫猜想?

哥德巴赫猜想 哥德巴赫猜想概述哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称"强"或"二重哥德巴赫猜想,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和。 目录[隐藏]哥德巴赫介绍 来源 【小史】 【意义】

[编辑本段]哥德巴赫介绍  哥德巴赫(Goldbach ]C.,1690.3.18~1764.11.20)是德国数学家;出生于格奥尼格斯别尔格(现名加里宁城);曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣;曾担任中学教师。1725年,到了俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年,移居莫斯科,并在俄国外交部任职。 [编辑本段]来源  1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:"我的问题是这样的:随便取某一个奇数,比如77,可以把它写成三个素数之和:77=53+17+7;再任取一个奇数,比如461,461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。"欧拉回信说:“这个命题看来是正确的".但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于6的偶数都是两个素数之和,但是这个命题他也没能给予证明。不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:2N+1=3+2(N-1),其中2(N-1)≥4.若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
  但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。
  哥德巴赫猜想:1+2现在通常把这两个命题统称为哥德巴赫猜想。 [编辑本段]【小史】  1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被1和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。
  从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。也没有任何实质性进展。哥德巴赫猜想由此成为数学皇冠上一颗可望不可即的"明珠"。 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。哥德巴赫猜想的传奇实际上是科学史上最传奇的历史(详见百度哥德巴赫猜想传奇)。
  到了20世纪20年代,才有人开始向它靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大偶数n的偶数都可以表示为九个质数的积加上九个质数的积,简称9+9。 需要说明的是,这个9不是确切的9,而是指1,2,3,4,5,6,7,8,9中可能出现的任何一个。又称为“殆素数”,意思是很像素数。与哥德巴赫猜想没有实质的联系。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。
  目前“最佳”的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。“充分大”陈景润教授指大约是10的500000次方,即在1的后面加上500000个“0”,是一个目前无法检验的数。所以,保罗赫夫曼在《阿基米德的报复》一书中的35页写道:充分大和殆素数是个含糊不清的概念。
  ■哥德巴赫猜想证明进度相关
  在陈景润之前,关于偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下:
  1920年,挪威的布朗证明了“9 + 9”。
  1924年,德国的拉特马赫证明了“7 + 7”。
  1932年,英国的埃斯特曼证明了“6 + 6”。
  1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。
  1938年,苏联的布赫夕太勃证明了“5 + 5”。
  1940年,苏联的布赫夕太勃证明了“4 + 4”。
  1948年,匈牙利的瑞尼证明了“1+ c”,其中c是一很大的自然数。
  1956年,中国的王元证明了“3 + 4”。
  1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。
  1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。
  1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1 + 3 ”。
  1966年,中国的陈景润证明了 “1 + 2 ”。
  以上数学家在本国都得到奖励,但是没有一人获得国际数学联合会的认可,于是人们开始思考。王元院士在1986年9月在南开大学的讲话中明确地说明:[1+1]与[1+2]不是一回事。(见“世界数学名题欣赏”《希尔博特第十问题》188页。辽宁教育出版社1987年版)。1996年7月17日,王元院士在中央电视台东方之子节目中也阐述了:哥德巴赫猜想仅指1+1。邱成桐院士认为,文学无论多么精彩,也不能够代替科学,2006年邱院士说,陈景润的成功是媒体造成的。一般认为,目前没有任何人对哥德巴猜想作过实质性的贡献。所有的证明都存在问题,与哥德巴猜想没有实质联系。
  人们发现,如果去掉殆素数,(1+2)比(1+1)困难的多。(1+3)比(1+2)困难的多。
  (1+1)是大于第一个素数“2”的1次方加1的偶数(即n>2+1)都是一个素数加上一个素数之和。
  (1+2)是大于第二个素数“3”的2次方加1的偶数(即n〉3x3+1=10)都是一个素数加上二个素数乘积之和。例如12=3×3+3。
  (1+3)是大于第三个素数“5”的3次方加1的偶数(即n〉5x5x5+1=126)都是一个素数加上三个素数乘积之和。例如128=5x5x5+3=5x5x3+53。小于128的偶数有21个不能够表示为(1+3),例如,4,6,8,10,12,14,16,18,20,22,24,26,28,36,42,54,72,96,114,120,126。
  (1+4)是大于第四个素数“7”的4次方加1的偶数(即n〉7x7x7x7+1=2402)都是一个素数加上四个素数乘积之和。例如2404=2401+3。小于2404的偶数有几百个不能够表示(1+4)。
  这是因为自然数数值越小,含素数个数多的合数越少。例如,100以内,有25个素数,有含2个素数因子的奇合数19个,含3个素数因子的合数有5个(27,45,63,75,99),含4个素数因子的合数仅1个(81)。实际上,哥德巴赫猜想只是这一类问题中难度最底端的问题。许多艰难的问题正等待人们去克服。
  。
  数学家认可的
  `````````p-1``````````1````````````N
  r(N)≈2∏——∏(1- ————)——————
  .........P-2......(P-1)^2.....(lnN)^2
  r(N)为将偶数表为两个素数之和n=p+p`的表示个数,
  ∏表示各参数连乘,ln表示取自然对数,^2表示取平方数。
  第一个∏的参数P是大于2的且属于该偶数的素因子的素数。
  第二个∏的参数P是大于2且不大于√N的素数。
  第一个∏的数值是分子大于分母,大于1。
  第二个∏的数值是孪生素数的常数,其2倍数就=1.320..大于1。
  N/(lnN)是计算N数内包含的素数的个数,(1/lnN)素数与数的比例。
  有不少人论述了:(N数内包含的素数的个数)与(素数与数的比例)的乘积 大于一。
  即:r(N)==(大于1的数)(大于1的数)(大于1的数)==大于1的数
  值得推荐的论述为
  由素数定理知:π(N)≈N/(lnN)
  π(N)≈(0.5)(N^0.5)[N^0.5]/ln(N^0.5)]==(0.5)(N^0.5)π(N^0.5),
  1/(lnN)≈π(N)/N(0.5)==(0.5)π(N^0.5)/(N^0.5)
  公式的主项==N/(lnN)^2==[(0.5)π(N^0.5)]^2
  约等于(一半的平方根内素数个数)的平方数。
  即:在{一半的平方根内素数个数**大于一时,换一句话说就是:
  第二个素数的平方数以上的偶数,公式的主项就大于1。
  (注:下面的的五条结论来自非官方,仅供讨论)
  一。陈景润证明的不是哥德巴赫猜想
  陈景润与邵品宗合著的【哥德巴赫猜想】第118页(辽宁教育出版社)写道:陈景润定理的“1+1”结果,通俗地讲是指:对于任何一个大偶数N,那么总可以找到奇素数P',P",或者P1,P2,P3,使得下列两式至少一式成立:“
  N=P'+P" (A)
  N=P1+P2*P3 (B)
  当然并不排除(A)(B)同时成立的情形,例如62=43+19,62=7+5X11。”
  众所周知,哥德巴赫猜想是指对于大于4的偶数(A)式成立,【1+2】是指对于大于10的偶数(B)式成立,
  两者是不同的两个命题,陈景润把两个毫不相关的命题混为一谈,并在申报奖项时偷换了概念(命题),陈景润也没有证明【1+2】,因为【1+2】比【1+1】难得多。
  二。 陈景润使用了错误的推理形式
  陈采用的是相容选言推理的“肯定肯定式”:或者A,或者B,A,所以或者A或B,或A与B同时成立。 这是一种错误的推理形式,模棱两可,牵强附会,言之无物,什么也没有肯定,正如算命先生那样“:李大嫂分娩,或者生男孩,或者生女孩,或者同时生男又生女(多胎)”。无论如何都是对的,这种判断在认识论上称为不可证伪,而可证伪性是科学与伪科学的分界。相容选言推理只有一种正确形式。否定肯定式:或者A,或者B,非A,所以B。相容选言推理有两条规则:1,否认一部分选言肢,就必须肯定另一部分选言肢;2,肯定一部分选言肢却不能否定另一部份选言肢。可见对陈景润的认可表明中国数学会思维混乱,缺乏基本的逻辑训练。
  三。 陈景润大量使用错误概念
  陈在论文中大量使用“充分大”和“殆素数”这两个含糊不清的概念。而科学概念的特征就是:精确性,专义性,稳定性,系统性,可检验性。“殆素数”指很像素数,拿像与不像来论证,这是小孩的游戏。而“充分大”,陈指10的50万次方,这是不可检验的数。
  四。陈景润的结论不能算定理
  陈的结论采用的是特称(某些,一些),即某些N是(A),某些N是(B),就不能算定理,因为所有严格的科学的定理,定律都是以全称(所有,一切,全部,每个)命题形式表现出来,一个全称命题陈述一个给定类的所有元素之间的一种不变关系,适用于一种无穷大的类,它在任何时候都无区别的成立。而陈景润的结论,连概念都算不上。
  五。陈景润的工作严重违背认识规律
  在没有找到素数普篇公式之前,哥氏猜想是无法解决的,正如化圆为方取决于圆周率的超越性是否搞清,事物质的规定性决定量的规定性。(王晓明 《中华传奇》杂志(哥德巴赫猜想传奇)1999年3期)陶慧洁责任编辑 [编辑本段]【意义】  一件事物之所以引起人们的兴趣,因为我们关心他,假如一个问题的解决丝毫不能引起人类的快感,我们就会闭上眼睛,假如这个问题对我们的知识毫无帮助,我们就会认为它没有价值,假如这件事情不能引起正义和美感,情操和热情就无法验证。
  哥德巴赫猜想是数的一种表现次序,人们持久地爱好它,是因为如果没有这种次序,人们就会丧失对更深刻问题的信念——因为无序是对美的致命伤,假如哥德巴赫猜想是错误的,它将限制我们的观察能力。使我们难以跨越一些问题并无法欣赏。一个问题把它无序的一面强加给我们的内心生活,就会使我们的感受趋向丑陋,引起自卑和伤感。哥德巴赫猜想实际是说,任何一个大于3的自然数n.都有一个x, 使得n+x与n-x都是素数,因为,(n+x)+(n-x)=2n.这是一种素数对自然数形式的对称,代表一种秩序,它之所以意味深长,是因为素数这种似乎杂乱无章的东西被人们用自然数n对称地串联起来,正如牧童一声口稍就把满山遍野乱跑的羊群唤在一起,它使人心晃神移,又像生物基因DNA,呈双螺旋结构绕自然数n转动,人们从玄虚的素数看到了纯朴而又充满青春的一面。对称不仅是视觉上的美学概念,它意味着对象的统一。
  素数具有一种浪漫的气质,它以神秘的魅力产生一种不定型的朦胧,相比之下,圆周率,自然对数。虚数。费肯鲍姆数就显得单纯多了,欧拉曾用一个公式把它们统一起来。而素数给人们更多的悲剧色彩,有一种神圣不可侵犯的冷漠。当哥德巴赫猜想变成定理,我们可以看到上帝的大智大慧,乘法是加法的重叠,而哥德巴赫猜想却用加法将乘性概括。在这隐晦的命题之中有着深奥的知识。它改变人们对数的看法:乘法的轮郭凭直观就可以一目了然,哥德巴赫猜想体现一种探索机能,贵贱之别是显然的,加法和乘法都是数量的堆积,但乘法是对加法的概括,加法对乘性的控制却体现了两种不同的要求,前者通过感受可以领悟,后者则要求灵感——人性和哲学。静观前者而神往于它的反面(后者),这理想的境界变成了百年的信仰和反思,反思的特殊价值在于满足了深层的好奇,是一切重大发现的精神通路,例如录音是对发音的反思结果,磁生电是对电生磁的反思结果。。。。顺思与反思是一种对称,表明一种活力与生机。顺思是自然的,反思是主动的,顺思产生经验,反思才能产生科学。顺思的内容常常是浅表的公开的,已知的。反思的内容常常是隐蔽的,未知的。反思不是简单的衷情回顾不是对经验的眷念,而是寻找事物本质的终极标准——-对历史真相或事物真相的揭示。
  哥德巴赫猜想为什么会吸引人?世界上绝对没有客观方面能打动人的事物和因素。一件事之所以会吸引人,那是因为它具有某种特质能震动观察者的感受力,感受力的大小即观察者的素质。感人的东西往往是开放的。给人以无限遐思和暗示。哥德巴赫猜想以一种表面开朗简洁的形式掩盖它阴险的本质。他周围笼罩着一种强烈的朦胧气氛。他以喜剧的方式挑逗人们开场,却无一例外以悲剧的形式谢幕。他温文尔雅地拒绝一切向她求爱的人们,让追求者争风吃醋,大打出手,自己却在一旁看着一场有一场拙劣的表演。哥氏猜想以一种抽象的美让人们想入非非,他营造一种仙境,挑起人们的欲望和野心,让那些以为有点才能的人劳苦、烦恼、愤怒中死亡。他恣意横行于人类精神的海洋,让智慧的小船难以驾驭,让科研的‘泰坦尼克’一次又一次沉没。。。
  人类的精神威信建立在科学对迷信和无知的胜利之上,人类的群体的精神健康依赖于一种自信,只有自信才能导入完美的信念使理想进入未来中,完美的信念使人生的辛劳和痛苦得以减轻,这样任何惊心动魄的灾难,荡气回肠的悲怆都难以摧毁人的信念,只有感到无能时,信念才会土崩瓦解。肉体在空虚的灵魂诱导之下融入畜类,人类在失败中引发自卑。哥德巴赫猜想的哲学意义正在如此。
  时代在等待名垂千古的英雄。
  【魔鬼探源】素数充满了玄妙,它能把复杂的事物说得简单明了,也能把简单明了的事物变得复杂。前者靠直觉和洞察,后者靠联想和推理。素数是数学世界最风骚的舞女,是数学场上的交际花和狐狸精,它主宰着数论的秘密女王,,它是妖精的化身。照亮数论四周,像吸血鬼一样获得永生。而数学家则在它四周衰竭而亡。
哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,提出了以下的猜想:
(a)任何一个>=6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。
到了20世纪20年代,才有人开始向它靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。
在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下:
1920年,挪威的布朗证明了‘“9 + 9”。
1924年,德国的拉特马赫证明了“7 + 7”。
1932年,英国的埃斯特曼证明了“6 + 6”。
1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。
1938年,苏联的布赫夕太勃证明了“5 + 5”。
1940年,苏联的布赫夕太勃证明了“4 + 4”。
1948年,匈牙利的瑞尼证明了“1 + c”,其中c是一很大的自然数。
1956年,中国的王元证明了“3 + 4”。
1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。
1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及 意大利的朋比利证明了“1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。
从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年。自"陈氏定理"诞生至今的30多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功。
布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j=2,3,…;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2都是素数,即得n=p1+p2,这样哥德巴赫猜想就被证明了。前一部分的叙述是很自然的想法。关键就是要证明'至少还有一对自然数未被筛去'。目前世界上谁都未能对这一部分加以证明。要能证明,这个猜想也就解决了。
然而,因大偶数n(不小于6)等于其对应的奇数数列(首为3,尾为n-3)首尾挨次搭配相加的奇数之和。故根据该奇数之和以相关类型质数+质数(1+1)或质数+合数(1+2)(含合数+质数2+1或合数+合数2+2)(注:1+2 或 2+1 同属质数+合数类型)在参与无限次的"类别组合"时,所有可发生的种种有关联系即1+1或1+2完全一致的出现,1+1与1+2的交叉出现(不完全一致的出现),同2+1或2+2的"完全一致",2+1与2+2的"不完全一致"等情况的排列组合所形成的各有关联系,就可导出的"类别组合"为1+1,1+1与1+2和2+2,1+1与1+2,1+2与2+2,1+1与2+2,1+2等六种方式。因为其中的1+2与2+2,1+2 两种"类别组合"方式不含1+1。所以1+1没有覆盖所有可形成的"类别组合"方式,即其存在是有交替的,至此,若可将1+2与2+2,以及1+2两种方式的存在排除,则1+1得证,反之,则1+1不成立得证。然而事实却是:1+2 与2+2,以及1+2(或至少有一种)是陈氏定理中(任何一个充分大的偶数都可以表示为两个素数的和,或一个素数与两个素数乘积的和),所揭示的某些规律(如1+2的存在而同时有1+1缺失的情况)存在的基础根据。所以1+2与2+2,以及1+2(或至少有一种)"类别组合"方式是确定的,客观的,也即是不可排除的。所以1+1成立是不可能的。这就彻底论证了布朗筛法不能证"1+1"。
由于素数本身的分布呈现无序性的变化,素数对的变化同偶数值的增长二者之间不存在简单正比例关系,偶数值增大时素数对值忽高忽低。能通过数学关系式把素数对的变化同偶数的变化联系起来吗?不能!偶数值与其素数对值之间的关系没有数量规律可循。二百多年来,人们的努力证明了这一点,最后选择放弃,另找途径。于是出现了用别的方法来证明歌德巴赫猜想的人们,他们的努力,只使数学的某些领域得到进步,而对歌德巴赫猜想证明没有一点作用。
歌德巴赫猜想本质是一个偶数与其素数对关系,表达一个偶数与其素数对关系的数学表达式,是不存在的。它可以从实践上证实,但逻辑上无法解决个别偶数与全部偶数的矛盾。个别如何等于一般呢?个别和一般在质上同一,量上对立。矛盾永远存在。歌德巴赫猜想是永远无法从理论上,逻辑上证明的数学结论。

“用当代语言来叙述,哥德巴赫猜想有两个内容,第一部分叫做奇数的猜想,第二部分叫做偶数的猜想。奇数的猜想指出,任何一个大于等于7的奇数都是三个素数的和。偶数的猜想是说,大于等于4的偶数一定是两个素数的和。”(引自《哥德巴赫猜想与潘承洞》)

关于歌德巴赫猜想的难度我就不想再说什么了,我要说一下为什么现代数学界对歌德巴赫猜想的兴趣不大,以及为什么中国有很多所谓的民间数学家对歌德巴赫猜想研究兴趣很大。

事实上,在1900年,伟大的数学家希尔伯特在世界数学家大会上作了一篇报告,提出了23个挑战性的问题。歌德巴赫猜想是第八个问题的一个子问题,这个问题还包含了黎曼猜想和孪生素数猜想。现代数学界中普遍认为最有价值的是广义黎曼猜想,若黎曼猜想成立,很多问题就都有了答案,而歌德巴赫猜想和孪生素数猜想相对来说比较孤立,若单纯的解决了这两个问题,对其他问题的解决意义不是很大。所以数学家倾向于在解决其它的更有价值的问题的同时,发现一些新的理论或新的工具,“顺便”解决歌德巴赫猜想。
例如:一个很有意义的问题是:素数的公式。若这个问题解决,关于素数的问题应该说就不是什么问题了。

为什么民间数学家们如此醉心于哥猜,而不关心黎曼猜想之类的更有意义的问题呢?

一个重要的原因就是,黎曼猜想对于没有学过数学的人来说,想读明白是什么意思都很困难。而歌德巴赫猜想对于小学生来说都能读懂。

数学界普遍认为,这两个问题的难度不相上下。

民间数学家解决歌德巴赫猜想大多是在用初等数学来解决问题,一般认为,初等数学无法解决歌德巴赫猜想。退一步讲,即使那天有一个牛人,在初等数学框架下解决了歌德巴赫猜想,有什么意义呢?这样解决,恐怕和做了一道数学课的习题的意义差不多了。

当年柏努力兄弟向数学界提出挑战,提出了最速降线的问题。牛顿用非凡的微积分技巧解出了最速降线方程,约翰·柏努力用光学的办法巧妙的也解出最速降线方程,雅克布·柏努力用比较麻烦的办法解决了这个问题。虽然雅克布的方法最复杂,但是在他的方法上发展出了解决这类问题的普遍办法——变分法。现在来看,雅克布的方法是最有意义和价值的。

同样,当年希尔伯特曾经宣称自己解决了费尔马大定理,但却不公布自己的方法。别人问他为什么,他回答说:“这是一只下金蛋的鸡,我为什么要杀掉它?”的确,在解决费尔马大定理的历程中,很多有用的数学工具得到了进一步发展,如椭圆曲线、模形式等。

所以,现代数学界在努力的研究新的工具,新的方法,期待着歌德巴赫猜想这个“下金蛋的鸡”能够催生出更多的理论和工具。
哥德巴赫,德国数学家。1742年6月7日,他在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想:一、任何不小于6的偶数,都是两个奇质数之和:二、任何不小于9的奇数,都是3个奇质数之和。这就是数学史上著名的“哥德巴赫猜想”。

同年6月30日,欧拉在给哥德巴赫的回信中,明确表示他深信哥德巴赫的这两个猜想都是正确的定理,但是欧拉当时还无法给出证明。

1900年,20世纪最传大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。

1957年,我国数学家王元证明了“2+3”。1962年,我国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1966年,我国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的和。”这个定理被世界数学界称为“陈氏定理”。

目前,有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。

1+1:哥德巴赫猜想

文章标题: 为什么A&B.是摧毁世界最隐蔽最具有欺骗性的方式
文章地址: http://www.xdqxjxc.cn/gushi/183719.html
文章标签:欺骗性  隐蔽  摧毁  方式  世界
Top