时间: 2023-03-12 23:02:51 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 91次
纳米技术,是指在0.1-100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。
科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显着地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。
纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。
纳米科学技术又将引发一系列新的科学技术,例如:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学等。
扩展资料
纳米技术与微电子技术的主要区别
纳米技术研究的是以控制单个原子、分子来实现设备特定的功能,是利用电子的波动性来工作的;而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的。人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。
纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。1993年国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。
其中纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。
参考资料来源:百度百科-纳米技术
纳米技术也称毫微技术,是研究结构尺寸在1纳米至100纳米范围内材料的性质和应用的一种技术。
1981年扫描隧道显微镜发明后,诞生了一门以1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子制造物质的技术。
从迄今为止的研究来看,关于纳米技术分为三种概念:
1,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。
2、纳米技术定位为微加工技术的极限。也就是通过纳米精度的"加工"来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。
现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。
3、从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。DNA分子计算机、细胞生物计算机的开发,成为纳米生物技术的重要内容。
扩展资料:应用领域:
当前纳米技术的研究和应用主要在材料和制备、微电子和计算机技术、医学与健康、航天和航空、环境和能源、生物技术和农产品等方面。用纳米材料制作的器材重量更轻、硬度更强、寿命更长、维修费更低、设计更方便。
利用纳米材料还可以制作出特定性质的材料或自然界不存在的材料,制作出生物材料和仿生材料。
1、纳米是一种几何尺寸的度量单位,1纳米=百万分之一毫米。
2、纳米技术带动了技术革命。
3、利用纳米技术制作的药物可以阻断毛细血管,“饿死”癌细胞。
4、如果在卫星上用纳米集成器件,卫星将更小,更容易发射。
5、纳米技术是多科学综合,有些目标需要长时间的努力才会实现。
6、纳米技术和信息科学技术、生命科学技术是当前的科学发展主流,它们的发展将使人类社会、生存环境和科学技术本身变得更美好。
7、纳米技术可以观察病人身体中的癌细胞病变及情况,可让医生对症下药。
扩展资料:百度百科--纳米技术
纳米技术也称毫微技术,是研究结构尺寸在1纳米至100纳米范围内材料的性质和应用的一种技术。1981年扫描隧道显微镜发明后,诞生了一门以1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子制造物质的技术。
从迄今为止的研究来看,关于纳米技术分为三种概念:
第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。
第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的"加工"来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。
此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。
第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。DNA分子计算机、细胞生物计算机的开发,成为纳米生物技术的重要内容。
扩展资料:
纳米技术的研究和应用主要在材料和制备、微电子和计算机技术、医学与健康、航天和航空、环境和能源、生物技术和农产品等方面。用纳米材料制作的器材重量更轻、硬度更强、寿命更长、维修费更低、设计更方便。利用纳米材料还可以制作出特定性质的材料或自然界不存在的材料,制作出生物材料和仿生材料。
1、纳米是一种几何尺寸的度量单位,1纳米=百万分之一毫米。
2、纳米技术带动了技术革命。
3、利用纳米技术制作的药物可以阻断毛细血管,“饿死”癌细胞。
4、如果在卫星上用纳米集成器件,卫星将更小,更容易发射。
5、纳米技术是多科学综合,有些目标需要长时间的努力才会实现。
6、纳米技术和信息科学技术、生命科学技术是当前的科学发展主流,它们的发展将使人类社会、生存环境和科学技术本身变得更美好。
7、纳米技术可以观察病人身体中的癌细胞病变及情况,可让医生对症下药。
纳米级测量技术包括:纳米级精度的尺寸和位移的测量,纳米级表面形貌的测量。纳米级测量技术主要有两个发展方向。
一是光干涉测量技术,它是利用光的干涉条纹来提高测量的分辨率,其测量方法有:双频激光干涉测量法、光外差干涉测量法、X射线干涉测量法、F一P标准工具测量法等,可用于长度和位移的精确测量,也可用于表面显微形貌的测量。
二是扫描探针显微测量技术(STM),其基本原理是基于量子力学的隧道效应,它的原理是用极尖的探针(或类似的方法)对被测表面进行扫描(探针和被测表面实际并不接触),借助纳米级的三维位移定位控制系统测出该表面的三维微观立体形貌。主要用于测量表面的微观形貌和尺寸。
用这原理的测量方法有:扫描隧道显微镜(STM)、原子力显微镜(AFM)等。
参考资料:百度百科——纳米技术
纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在1至100纳米范围内材料的性质和应用。
纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。
纳米科学技术又将引发一系列新的科学技术,例如:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学等。
扩展资料:
纳米技术应用领域(部分):
1,测量技术
纳米级测量技术包括:纳米级精度的尺寸和位移的测量,纳米级表面形貌的测量。纳米级测量技术主要有两个发展方向。
一是光干涉测量技术,它是利用光的干涉条纹来提高测量的分辨率,其测量方法有:双频激光干涉测量法、光外差干涉测量法、X射线干涉测量法、F一P标准工具测量法等,可用于长度和位移的精确测量,也可用于表面显微形貌的测量。
二是扫描探针显微测量技术(STM),其基本原理是基于量子力学的隧道效应,它的原理是用极尖的探针(或类似的方法)对被测表面进行扫描(探针和被测表面实际并不接触),借助纳米级的三维位移定位控制系统测出该表面的三维微观立体形貌。主要用于测量表面的微观形貌和尺寸。
用这原理的测量方法有:扫描隧道显微镜(STM)、原子力显微镜(AFM)等。
2,加工技术
纳米级加工的含意是达到纳米级精度的加工技术。
由于原子间的距离为0.1一0.3nm,纳米加工的实质就是要切断原子间的结合,实现原子或分子的去除,切断原子间结合所需要的能量,必然要求超过该物质的原子间结合能,即所播的能量密度是很大的。用传统的切削、磨削加工方法进行纳米级加工就相当困难了。
截至2008年纳米加工有了很大的突破,如电子束光刻(UGA技术)加工超大规模集成电路时,可实现0.1μm线宽的加工:离子刻蚀可实现微米级和纳米级表层材料的去除:扫描隧道显微技术可实现单个原子的去除、扭迁、增添和原子的重组。
3,材料合成
自1991年Gleiter等人率先制得纳米材料以来,经过10年的发展纳米材料有了长足的进步。如今纳米材料种类较多,按其材质分有:金属材料、纳米陶瓷材料、纳米半导体材料、纳米复合材料、纳米聚合材料等等。纳米材料是超徽粒材料,被称为“21世纪新材料”,具有许多特异性能。
例如用纳米级金属微粉烧结成的材料,强度和硬度大大高于原来的金属,纳米金属居然由导电体变成绝缘体。一般的陶瓷强度低并且很脆。
但纳米级微粉烧结成的陶瓷不但强度高并且有良好的韧性。纳米材料的熔点会随超细粉的直径的减小而降低。
例如金的熔点为1064℃,但10nm的金粉熔点降低到940℃,snm的金粉熔点降低到830℃,因而烧结温度可以大大降低。
纳米陶瓷的烧结温度大大低于原来的陶瓷。纳米级的催化剂加入汽油中。可提高内燃机的效率。
加入固体燃料可使火箭的速度加快。药物制成纳米微粉。可以注射到血管内顺利进入微血管。
参考资料:百度百科----纳米技术
1、纳米结构材料
包括纯金属、合金、复合材料和结构陶瓷,具有十分优异的机械、力学及热力性能。可使构件重量大大减轻。
2、纳米催化、敏感、储氢材料
用于制造高效的异质催化剂、气体敏感器及气体捕获剂,用于汽车尾气净化、石油化工、新型洁净能源等领域。
3、纳米光学材料
用于制作多种具有独特性能的光电子器件。如量子阱GaN型蓝光二极管、量子点激光器、单电子晶体管等。
4、纳米结构的巨磁电阻材料
磁场导致物体电阻率改变的现象称为磁电阻效应,对于一般金属其效应常可忽略。但是某些纳米薄膜具有巨磁电阻效应。在巨磁电阻效应发现后的第6年,1994年IBM公司研制成巨磁电阻效应的读出磁头,将磁盘记录密度一下子提高了17倍。
这种材料还可以制作测量位移、角度的传感器,广泛应用于数控机床、汽车测速、非接触开关、旋转编码器中。
5、纳米微晶软磁材料
用于制作功率变压器、脉冲变压器、扼流圈、互感器等。
6、纳米微晶稀土永磁材料
将晶粒做成纳米级,可使钕铁硼等稀土永磁材料的磁能积进一步提高,并有希望制成兼备高饱和磁化强度、高矫顽力的新型永磁材料(通过软磁相与永磁相在纳米尺度的复合)。
1、建筑行业方面:在建筑领域中使用纳米技术可以使结果相差很大,比如在环保项目上所看到的新材料和纳米二氧化钛粒子混合,应用于窗户自我清洁,建筑物和道路上。
2、陶瓷方面:纳米材料在陶瓷上的应用主要是耐高温、防腐、耐刮花、耐磨等方面,纳米陶瓷粉末涂料在高温环境下具有优异的隔热保温效果,不脱落、不燃烧,耐水、防潮,无毒、对环境没有污染。
3、能源方面:特别是在太阳能光伏领域有着极好的效果,纳米涂料被应用于光伏太阳能电池板表面后有效的防止灰尘的累积,表面细微的粉尘在雨水冲刷时即被带走,达到自洁防污的效果,可以持续保持电池板表面的干净整洁,发电效率得以保障。
4、金属材料方面:金属材料表面处理由过去的电镀等工艺发展为更为简单的纳米涂料涂覆工艺,使金属表面处理工艺更简单,纳米涂料在不锈钢材料表面的应用可以实现防指纹、疏水疏油及防污的作用,在其它合金材料表面涂覆纳米涂料,可以使金属材料表面具备抗腐蚀、防锈防潮、耐高温等特性。
扩展资料:
作用:
纳米材料是一种在三维空间中至少有一维处于纳米尺寸(0.1-100 nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
纳米结构是以纳米尺度的物质单元为基础按一定规律构筑或营造的一种新体系。包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系等。 纳米结构材质包括纯金属、合金、复合材料和结构陶瓷,具有十分优异的机械、力学及热力性能。可使构件重量大大的减轻。
在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度高更加精准。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。
参考资料来源:百度百科-纳米材料
参考资料来源:百度百科-应用
参考资料来源:百度百科- 生活
全站搜索