欢迎访问喜蛋文章网
你的位置:首页 > 经典文章 > 文章正文

我想查找英国数学家布鲁克泰勒的详细生平资料,请问可以在哪些网站或者书籍上寻找

时间: 2022-04-04 10:02:04 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 99次

我想查找英国数学家布鲁克泰勒的详细生平资料,请问可以在哪些网站或者书籍上寻找

泰勒这个数学家一天在想些什么才能想出泰勒公式这种奇怪的东西

同学,当你学了复变函数之后,就晓得了
泰勒级数只是劳伦级数在极点个数为0的情况下的特例。。。
而劳伦级数又是从柯西定理推导而来。。
数学是一条长河,没有任何人可以凭空想象出一条定理公式什么的,任何人的成功都是站在其他人的肩膀之上
发帖要带格式,详情见吧规,删了哦

数学家泰勒简介

18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685年8月18日在米德尔塞克斯的埃德蒙顿出生。1709年后移居伦敦,获法学硕士学位。他在1712年当选为英国皇家学会会员,并于两年后获法学博士学位。同年(即1714年)出任英国皇家学会秘书,四年后因健康理由辞退职务。1717年,他以泰勒定理求解了数值方程。最后在1731年12月29日于伦敦逝世。

泰勒的主要著作是1715年出版的《正的和反的增量方法》,书内以下列形式陈述出他已于1712年7月给其老师梅钦(数学家、天文学家)信中首先提出的著名定理——泰勒定理:式内v为独立变量的增量,及为流数。他假定z随时间均匀变化,则为常数。上述公式以现代形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成的,当x=0时便称作马克劳林定理。1772年,拉格朗日强调了此公式之重要性,而且称之为微分学基本定理,但泰勒于证明当中并没有考虑级数的收敛性,因而使证明不严谨,这工作直至十九世纪二十年代才由柯西完成。

泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其它创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。

1715年,他出版了另一名著《线性透视论》,更发表了再版的《线性透视原理》(1719)。他以极严密之形式展开其线性透视学体系,其中最突出之贡献是提出和使用「没影点」概念,这对摄影测量制图学之发展有一定影响。另外,还撰有哲学遗作,发表于1793年。
英国数学家泰勒(Brook Taylor),于1685 年8月18日在米德尔塞克斯的埃德蒙顿出生。1709年后移居伦敦,获法学硕士学位。在1731年12月29日于伦敦逝世。
Brook Taylor 布鲁克·泰勒
  18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685 年8月18日在米德尔塞克斯的埃德蒙顿出生。1709年后移居伦敦,获法学硕士学位。他在1712年当选为英国皇家学会会员,并于两年后获法学博士学位。同年(即1714年)出任英国皇家学会秘书,四年后因健康理由辞退职务。1717年,他以泰勒定理求解了数值方程。 最后在1731年12月29日于伦敦逝世。
  泰勒的主要著作是1715年出版的《正的和反的增量方法》,书内以下列形式陈述出他已于1712年7月给其老师梅钦(数学家 、天文学家)信中首先提出的著名定理——泰勒定理:式内v为独立变量的增量, 及 为流数。他假定z随时间均匀变化,则 为常数。上述公式以现代形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成的,当x=0时便称作麦克劳林定理。1772年 ,拉格朗日强调了此公式之重要性,而且称之为微分学基本定理,但泰勒于证明当中并没有考虑级数的收敛性,因而使证明不严谨, 这工作直至十九世纪二十年代才由柯西完成。
  泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程 导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。
  1715年,他出版了另一名著《线性透视论》,更发表了再版的《线性透视原理》(1719)。他以极严密之形式展开其线性透 视学体系,其中最突出之贡献是提出和使用“没影点”概念, 这对摄影测量制图学之发展有一定影响。另外,还撰有哲学遗作,发表于1793年。
这里面有介绍,你去看哈!希望对你有帮助!

求大神把泰勒公式中常用函数的展开式写给我谢谢了,要详细的

sinx cosx tanx (1+x)^α arcsinx arctanx e^x ln(1+x), 就是这些的展开式谢谢了,最好是能给个图片把内容都写在里面。

泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。

若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:

其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小。

余项

泰勒公式的余项Rn(x)可以写成以下几种不同的形式:

1、佩亚诺(Peano)余项:

这里只需要n阶导数存在。

2、施勒米尔希-罗什(Schlomilch-Roche)余项:

其中θ∈(0,1),p为任意正实数。(注意到p=n+1与p=1分别对应拉格朗日余项与柯西余项) [2] 

3、拉格朗日(Lagrange)余项:

其中θ∈(0,1)。

4、柯西(Cauchy)余项:

其中θ∈(0,1)。

5、积分余项:

其中以上诸多余项事实上很多是等价的。

带佩亚诺余项

以下列举一些常用函数的泰勒公式:

扩展资料:

实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。泰勒公式的余项可以用于估算这种近似的误差。

泰勒展开式的重要性体现在以下五个方面:

1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。

2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。

3、泰勒级数可以用来近似计算函数的值,并估计误差。

4、证明不等式。

5、求待定式的极限。

泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

泰勒公式得名于英国数学家布鲁克·泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。拉格朗日在1797年之前,最先提出了带有余项的现在形式的泰勒定理。

参考资料:

泰勒公式_百度百科

泰勒公式中常用函数的展开式:

考研常用泰勒展开:

sinx=x-1/6x^3+o(x^3)
arcsinx=x+1/6x^3+o(x^3)
tanx=x+1/3x^3+o(x^3)
arctanx=x-1/3x^3+o(x^3)
ln(1+x)=x-1/2x^2+o(x^2)
cosx=1-1/2x^2+o(x^2)

扩展资料

泰勒公式

公式描述:泰勒公式可以用若干项连加式来表示一个函数,这些相加的项由函数在某一点的导数求得。

麦克劳林公式是泰勒公式(在  ,记ξ  )的一种特殊形式。

在不需要余项的精确表达式时,n阶泰勒公式也可写成

由此得近似公式

参考资料:百度百科麦克劳林公式

泰勒公式形式

泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。

若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:

其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小。[1]

泰勒公式

余项

泰勒公式的余项Rn(x)可以写成以下几种不同的形式:

1、佩亚诺(Peano)余项:

这里只需要n阶导数存在。

2、施勒米尔希-罗什(Schlomilch-Roche)余项:

其中θ∈(0,1),p为任意正实数。(注意到p=n+1与p=1分别对应拉格朗日余项与柯西余项)[2]

3、拉格朗日(Lagrange)余项:

其中θ∈(0,1)。

4、柯西(Cauchy)余项:

其中θ∈(0,1)。

5、积分余项:

其中以上诸多余项事实上很多是等价的。[2]

带佩亚诺余项

以下列举一些常用函数的泰勒公式[1]:

你要从原理明白泰勒级数,就可以自己推导,一般所说的泰勒公式实际上是当x为0的情况,也就是麦克劳林公式,那么构成泰勒公式就是当x=0的时候,第一项为原函数值,第二项是一阶导数的值,第三项是二阶导数的值,(每一项的函数值都是当x=0的结果)以此类推,公式不需要背,你了解任意函数的导数,就能自行推导泰勒公式。

g

给你一个猛的。。。记得采纳

求考研数学中常用的几个泰勒展开公式,谢谢!

1、sinx=x-1/6x^3+o(x^3),这是泰勒公式的正弦展开公式,在求极限的时候可以把sinx用泰勒公式展开代替。

2、arcsinx=x+1/6x^3+o(x^3),这是泰勒公式的反正弦展开公式,在求极限的时候可以把arcsinx用泰勒公式展开代替。

3、tanx=x+1/3x^3+o(x^3),这是泰勒公式的正切展开公式,在求极限的时候可以把tanx用泰勒公式展开代替。

4、arctanx=x-1/3x^3+o(x^3),这是泰勒公式的反正切展开公式,在求极限的时候可以把arctanx用泰勒公式展开代替。

5、ln(1+x)=x-1/2x^2+o(x^2),这是泰勒公式的ln(1+x)展开公式,在求极限的时候可以把ln(1+x)用泰勒公式展开代替。

6、cosx=1-1/2x^2+o(x^2),这是泰勒公式的余弦展开公式,在求极限的时候可以把cosx用泰勒公式展开代替。

扩展资料:

泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。

他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。

泰勒展开式的重要性体现在以下五个方面:

1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。

2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。

3、泰勒级数可以用来近似计算函数的值,并估计误差。

4、证明不等式。

5、求待定式的极限。

参考资料:百度百科——泰勒展开式

inx=x-1/6x^3+o(x^3)

arcsinx=x+1/6x^3+o(x^3)

tanx=x+1/3x^3+o(x^3)

arctanx=x-1/3x^3+o(x^3)

ln(1+x)=x-1/2x^2+o(x^2)

cosx=1-1/2x^2+o(x^2)

以上适用于x趋于0时的泰勒展开

扩展资料:

泰勒公式可以用若干项连加式来表示一个函数,这些相加的项由函数在某一点的导数求得。

在数学中,泰勒级数(英语:Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒级数是以于1715年发表了泰勒公式的英国数学家布鲁克·泰勒(Sir Brook Taylor)的名字来命名的。

通过函数在自变量零点的导数求得的泰勒级数又叫做迈克劳林级数,以苏格兰数学家科林·麦克劳林的名字命名。 泰勒级数在近似计算中有重要作用。

定义:如果  在点x=x0具有任意阶导数,则幂级数称为  在点x0处的泰勒级数。 

在泰勒公式中,取x0=0,得到的级数

泰勒级数的重要性体现在以下三个方面:

1 幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。

2 一个解析函数可被延伸为一个定义在复平面上的一个开区域上的泰勒级数通过解析延拓得到的函数,并使得复分析这种手法可行。

3 泰勒级数可以用来近似计算函数的值。

对于一些无穷可微函数f(x) 虽然它们的展开式收敛,但是并不等于f(x)。例如,分段函数  ,当 x ≠ 0 且 f(0) = 0 ,则当x = 0所有的导数都为零,所以这个f(x)的泰勒级数为零,且其收敛半径为无穷大,虽然这个函数 f 仅在 x = 0 处为零。而这个问题在复变函数内并不成立,因为当 z 沿虚轴趋于零时  并不趋于零。

一些函数无法被展开为泰勒级数是因为那里存在一些奇点。但是如果变量x是负指数幂的话,我们仍然可以将其展开为一个级数。例如,  就可以被展开为一个洛朗级数。

基本原理:多项式的k重不可约因式是其微商的k-1重不可约因式;

基本思想:通过系数为微商的多项式来研究任意函数的性质(本科主要是收敛性)

参考资料:百度百科-泰勒级数

  公式如下:

  1、sinx=x-1/6x^3+o(x^3)

  2、arcsinx=x+1/6x^3+o(x^3)

  3、tanx=x+1/3x^3+o(x^3)

  4、arctanx=x-1/3x^3+o(x^3)

  5、ln(1+x)=x-1/2x^2+o(x^2)

  6、cosx=1-1/2x^2+o(x^2)

  以上适用于x趋于0时的泰勒展开

  望采纳谢谢!
sinx=x-1/6x^3+o(x^3)
arcsinx=x+1/6x^3+o(x^3)
tanx=x+1/3x^3+o(x^3)
arctanx=x-1/3x^3+o(x^3)
ln(1+x)=x-1/2x^2+o(x^2)
cosx=1-1/2x^2+o(x^2)
以上适用于x趋于0时的泰勒展开
、sinx=x-1/6x^3+o(x^3),这是泰勒公式的正弦展开公式,在求极限的时候可以把sinx用泰勒公式展开代替。
2、arcsinx=x+1/6x^3+o(x^3),这是泰勒公式的反正弦展开公式,在求极限的时候可以把arcsinx用泰勒公式展开代替。

麦克劳林级数 和泰勒级数的区别

一句话概括:

泰勒级数【有限项】:表示函数是有误差的,误差值是拉格朗日余项;

而泰勒展开式【无限项】是:函数的幂级数形式的精确表示

___________________________________

我的问题

为啥说:泰勒级数的项,是有限的?

【至于说,泰勒展开式的项,是无限的,这我可以理解!】

一、定义区别

1、麦克劳林级数:函数在x=0处的泰勒级数,它是牛顿(I.Newton)的学生麦克劳林(C.Maclaurin)于1742年给出的,用来证明局部极值的充分条件。克劳林级数是泰勒级数的一个特例。

2、泰勒级数:用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。

二、命名人不同

1、麦克劳林级数:牛顿(I.Newton)的学生麦克劳林(C.Maclaurin)于1742年给出的,以麦克劳林命名。

2、泰勒级数:英国数学家布鲁克·泰勒(Sir Brook Taylor)的名字来命名。

三、计算过程不同

1、麦克劳林级数:设函数f(x)的麦克劳林级数的收敛半径R>0,当n→∞时,如果函数f(x)在任一固定点x处的n阶导数f(n)(x)有界,则函数f(x)在收敛区间(-R,R)内能展开成麦克劳林级数。

2、泰勒级数:如果f(x)在点x=x0具有任意阶导数,则幂级数

称为f(x) 在点x0处的泰勒级数。

四、应用不同

1、麦克劳林级数:通过系数为微商的多项式来研究任意函数的性质。

2、泰勒级数:幂级数的求导和积分可以逐项进行,一个解析函数可被延伸为一个定义在复平面上的一个开区域上的泰勒级数通过解析延拓得到的函数,并使得复分析这种手法可行。泰勒级数可以用来近似计算函数的值。

参考资料来源:百度百科-泰勒级数

参考资料来源:百度百科-麦克劳林级数

泰勒级数才是无穷项,

泰勒展开式是指泰勒中值定理的展开式,是有限项;
相应的马克劳林公式(级数)是在x0=0时的泰勒公式(级数)

1、性质

麦克劳林级数:是函数在x=0处的泰勒级数,是牛顿的学生麦克劳林于1742年给出的,用来证明局部极值的充分条件。

泰勒级数:用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得;是以于1715年发表了泰勒公式的英国数学家布鲁克·泰勒的名字来命名的。

2、表示

麦克劳林级数:

泰勒级数:

扩展资料:

泰勒级数的意义:

1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。

2、一个解析函数可被延伸为一个定义在复平面上的一个开区域上的泰勒级数通过解析延拓得到的函数,并使得复分析这种手法可行。

3、泰勒级数可以用来近似计算函数的值。

参考资料来源:百度百科-泰勒级数

参考资料来源:百度百科-麦克劳林级数

文章标题: 我想查找英国数学家布鲁克泰勒的详细生平资料,请问可以在哪些网站或者书籍上寻找
文章地址: http://www.xdqxjxc.cn/jingdianwenzhang/135855.html
文章标签:泰勒  我想  数学家  英国  生平
Top