悖论的真正面目及解决方法
悖论本身是正确的,还是由于一个理论存在缺陷才产生的?悖论有什么统一的解决方法吗?或者罗素悖论怎么解决...恐怕没有人能回答的了你,因为至今世界上没有人发表过关于解决它的方法。如果你解决了,你就是第一人,如果我知道了,告诉了你,而我更应该自己去发表。祝愿你能够在这个问题上有所建树。
而我还是回答了你。
一切的悖论可以分析就可以解决。所以要解决它,那就去分析它。不存在无解的问题。当然我可能太自以为是了!了解下黑格尔对这个问题的看法。
无解
有解决手指撒放造成的弓箭手悖论的方法吗
简单的来说没有,
而且,弓箭手悖论是指“箭矢走向与箭头所指方向的不同”也就是指哪儿射不到哪儿
这个悖论是由多重因素导致的,其中包括手机撒放、箭杆弹性变形、空气动力学、侧向风等等。
所以除了激光,其他任何射击都会有弓箭手悖论,而且无法解决。
甚至连激光,如果宏观的考量也会被引力场带偏,从而使其“指哪儿射不到哪儿”
所以理论上来说,弓箭手悖论是永远无法解决的。只在忽略大部分影响,并扩大可接受范围的情况下,弓箭手悖论才能解决。
1=0.99999的悖论解决了
一个数学悖论:0.99999.=1rn 已知1/3=0.33333.rn 1/3乘以三等于1rn 但0.33333.乘以 3 等于 0.99999.rn 而0.99999.不等于1rn 我的解题方式有误吗?有请指出,并给出正确的解决方案.没有,请论证0.99999.=1rn 附:rn 设0.333333.=xrn 列出方程:10x-x=3.33333.-0.33333.=3rn 解得x=3/9=1/3这不是悖论,而是事实,无限循环小数0.999...和 1 严格相等,不是无限趋近,而是完全相同,你可以认为 他们是同一个数的两种写法而已。
这两者相等,是实数的构造过程直接决定的,而严格的证明过程也绕不开构造实数的两种方法,戴德金分割和柯西序列法,并且他们是等价的。
整数的除法法则
1)从被除数的高位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数。
2)除到被除数的哪一位,就在那一位上面写上商。
3)每次除后余下的数必须比除数小。
除数是整数的小数除法法则:
1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐。
2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。
1=0.99999数学界的争议,诡异的数学题你能否解开
我们常说1就是1,2就是2,但是在数学界里,1=0.99999能够被证明出来,两个数字明明是有差别的,但却很奇怪的能够相等,这又是为什么呢?在数学界还有着许多类似的争议,下面探秘志小编就先为大家介绍一下1=0.99999数学界的争议!
1=0.99999数学界的争议
文章导航:
1、运算过程
2、大学老师解释
3、数学与现实
4、类似的数学界的争议
5、诡异的数学题
运算过程
a=0.99999…
10a=9.99999…
10a=9+0.99999…
10a=9+a
9a=9
a=1
这是证明1=0.99999的例子,根据这个思路看起来是没有什么问题的,但似乎总有一些不对劲的地方。
1=0.99999数学界的争议,诡异的数学题你能否解开
韩国大学的数学老师解释
认为0.99999等于1的人是因为1/3=0.33333 1/3X3=1,0.333X3=0.99999=1。普通人的思维是,循环小数后面是无限循环的,很难理解。现在我告诉大家,其实循环数有另外很多种方式,例如多位循环等,我现在用通俗的方式来告诉大家。
1=0.99999数学界的争议,诡异的数学题你能否解开
0.999999999999,9的循环,是单位数循环。现在我们加入一个多位循环的循环数进去,例1/7=0.142857142857142857的循环。我们计算1/X和0.99999/X,看看1/X是不是等于0.9999999/X,如果0.99999=1,计算结果肯定是相等的。在计算过程中你们会发现一种很神奇的现象,(先算算,在举一反三用其他循环数来思考)是不是可以算出来无限类型的循环,非常神奇,这就是数学。我们还可以把X设置为另外的非循环数。
数学与现实
数学和现实可以没有任何关系,它的关键是定义。不同的定义,可以让他相等,也可以让他不相等。
如果你停留在有理数(即分数)的定义,认定0.9999......是有理数,那么0.9999......转化为分数就是1/1,无疑是1。
如果你停留在实数的定义,认定0.9999......是实数,那么0.9999......和1之间不存在其他实数,而且无论是转化为序列表示还是戴德金分割,都是等价的,因此也相等。
1=0.99999数学界的争议,诡异的数学题你能否解开
如果你超越实数,定义出含“无限接近1的数”的新数系,那么他就不等于1.
而实际上,认为等于1的人,心中都创造了1个不完备的、超越实数的、含“无限接近某实数的数”的新数系。
当然,数学与现实又是分不开的,生活中的很多内容都要运用到数学的原理。
类似的数学界的争议
1、芝诺悖论
这也算是物理学界的一个争议,阿基里斯与乌龟芝诺赛跑,乌龟在阿里斯基前面先跑100米,然后阿基里斯才开始跑。
当阿基里斯跑了100米的时候,乌龟多跑出去一米,阿基里斯跑了一米的时候,乌龟又多跑了一厘米,以此推论下来,阿基里斯永远都跑不过乌龟。虽然现实中是很快就跑过去的,但是在数学里,似乎永远都是追不上的。
1=0.99999数学界的争议,诡异的数学题你能否解开
2、蚂蚁与皮筋
一只蚂蚁在理性弹性绳的一端,向另一端以每秒1cm的速度爬行。弹性绳同时以每秒1m的速度均匀地拉长,蚂蚁能否爬到终点?
看起来似乎不行,但是在数学里这又是行的,假设弹性绳的速度是每秒0.9cm,那么直觉上蚂蚁就能爬到终点。而弹性绳均匀拉长意味着其上总有一点的速度是每秒0.9cm,也就是说蚂蚁可以爬到这个点。接下来把整个弹性绳分段就好了。还有一些数学题也显得非常的诡异。
诡异的数学题
一天晚上,有三个人去住宾馆,300元一晚。三个人刚好每人掏了100元凑够300元交给了老板。他们回到了房间,老板忘今天打折又还了50元给他们,让服务员送还给他们。服务员想50元钱他们也不好分,自己就拿了20元,这三人每人得到10元钱后,应该是每人只花了90元钱住了一晚,3*90=270,服务元拿20元,270+20=290元,请问那10元钱那里去了??300-290=10(元) 想问的是:明明三个人是出了300元怎么就变成290元了呢?
1永远不等于0.99999…的,后面的数再多,也只不过减少了差而已。看似等于,但有一点,你得注意。那就是他是无限循环小数。后面的9有无数个,如果后面的9是有限的,则就不等于10a,就等于9.1a而已。像这种不成立的证明题那基本都有原因。那就像1元=0.01元。只不过是因为1ⅹ1=1,不变,换个单位成0.1,而0.1ⅹ0.1。却等于0.01,缩小了十倍。用这个BUG来证明钱缩水。这些不可能的证明题目都是用关系中的BUG而已啦
1=0.99999是成立的,证明方法有很多种在此就不做赘述了
其实可以用数轴的方法来解决这一问题,任何一个数都在数轴上有一个对应的点,如果有两个不同的数,数轴上的点就不重合,那他们之间肯定有其他的点(数),但把1和0.99999放到数轴上,是找不到两点之间的任何其他数的,所以数轴上1 的点就是0.99999 的点,两点重合,那么1就等于0.99999
无限数是概念,本质上就不能用来做运算。用它来做运算,你得到的结果肯定是错误。
如果1=0.9…,0=0.0…01。如果a=0.0…01,10a还是等于0.0…01。从现实来看明显就是错的,数学是建立在现实这个基础上,所以这就是错的。
硬币悖论有好的解决方法吗?,,
没有。
会消失不腰和表演的观众通过一枚硬币,并展示了他的手,然后将消失拉(通用)用食指和中指,硬币的消失将方便地放在两个手指,又给观众手中,和硬币,再慢慢松开两根手指,原理是在消失的作用下将隐藏线恢复到腰部,起到硬币消失的效果。
一般说来,由于悖论是形式矛盾,即是某种精神规定的产物,因此它们不能直接反映事物的辩证法本性。因此,它们不能被称为“特殊的客观真理”,而只能被称为“扭曲的真理”。
悖论的类型:
古今中外有许多著名的悖论,它们冲击了逻辑和数学的基础,激发了人们对知识和精确思维的追求,吸引了历代众多思想家和爱好者的关注。
悖论的解决需要创造性思维,而悖论的解决往往会给人们带来新的想法。根据悖论形成的原因,将其归纳为六种类型,它们都是广为流传的常见悖论。随着现代数学、逻辑学、物理学和天文学的迅速发展,出现了许多新的悖论,人们正在孜孜不倦地探索它们,它们的结果有望极大地改变我们的思维方式。
有没有解决的方法
题目我们都看到了,却没有看到你的问题
有解决的办法
有啊
文章标题: 汤武革命悖论有没有解决的方法
文章地址: http://www.xdqxjxc.cn/jingdianwenzhang/134782.html