欢迎访问喜蛋文章网
你的位置:首页 > 经典文章 > 文章正文

为什么有时候雪花落下来是单片的雪花,有时候是一小团雪,是不规则的形状

时间: 2022-02-11 20:01:17 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 103次

为什么有时候雪花落下来是单片的雪花,有时候是一小团雪,是不规则的形状

雪花为什么是一片一片的像花一样,而不是一团一团的?

花形成的时候,大气里水气是饱和的,温度则在摄氏零度以下。微细的冰晶会渐渐围绕着凝结核。然后,冰晶连结在一起而雪花亦随之诞生。这过程被称为“结晶”。在结晶过程中,水分子会以它们的基本排列方式从液态变成固态。由于冰晶的基本模式是六角棱体,大部份冰晶的雏形都是六角形的。当更多的水分子与冰晶结合后,,他们会由第一个六角形开始保持冰晶的形状继续向外生长。

虽然大部份冰晶形成时有着六边对称的特性,但是它们会因应温度的改变而做成很多不同形状的变化。若温度低于摄氏零下三十度,六角柱体的冰晶便会形成,典型的六角形的扁平片状雪花会在摄氏零下十五度左右时形成。当温度上升至摄氏零下五度,无论针状、柱状抑或一些不能估计的形状的雪花便会产生。由于雪层越高,温度越冷,因此六角柱状的雪花通常会在高云形成。较低的云层通常会形成六角平面的片状雪花,而不同形状的结晶会在低云中产生。

我们知道雪晶的六角形状能细分为两大类,一是片状,另一类是柱状。我们经常看到比较美丽的雪花便是那些六边对称的片状雪晶。它们通常会在温度介乎摄氏零下五度至零下二十度之间形成,柱状雪花包括了针状和中空柱状,针状雪晶在温度介乎摄氏零度至摄氏零下五度形成,中空柱状在是低于摄氏零下二十度形成。

如果我们希望找出大部分冰晶是六角棱体的原因,我们或许应该首先了解一下水分子。水分子是由两个氢原子以及一个氧原子(这便是我们常把水称为H2O的原因),它们以一种很强的键——共价键, 黏合在一起。

当液态的水分子被冷却至凝固点,水分子会互相碰撞,形成固态冰晶,然后它们会利用氢键结合在一起。若分子与分子之间结合,便会更稳定。相对来说,最稳定的排列方式是以六角形状把六个水分子黏在一起,这也是为什么大部份冰晶是六角形的。
下雪时的景致美不胜收,但科学家和工艺美术师赞叹的还是小巧玲珑的雪花图案。远在一百多年前,冰川学家们已经开始详细描述雪花的形态了。

西方冰川学的鼻祖丁铎耳在他的古典冰川学著作里,这样描述他在罗扎峰上看到的雪花:“这些雪花……全是由小冰花组成的,每一朵小冰花都有六片花瓣,有些花瓣象山苏花一样放出美丽的小侧舌,有些是圆形的,有些又是箭形的,或是锯齿形的,有些是完整的,有些又呈格状,但都没有超出六瓣型的范围。”

在我国,早在公元前一百多年的西汉文帝时代,有位名叫韩婴的诗人,他写了一本《韩诗外传》,在书中明确指出,“凡草木花多五出,雪花独六出。”

雪花的基本形状是六角形,但是大自然中却几乎找不出两朵完全相同的雪花,就象地球上找不出两个完全相同的人一样。许多学者用显微镜观测过成千上万朵雪花,这些研究最后表明,形状、大小完全一样和各部分完全对称的雪花,在自然界中是无法形成的。

在已经被人们观测过的这些雪花中,再规则匀称的雪花,也有畸形的地方。为什么雪花会有畸形呢?因为雪花周围大气里的水汽含量不可能左右上下四面八方都是一样的,只要稍有差异,水汽含量多的一面总是要增长得快一些。

世界上有不少雪花图案搜集者,他们象集邮爱好者一样收集了各种各样的雪花照片。有个名叫宾特莱的美国人,花了毕生精力拍摄了近六千张照片。苏联的摄影爱好者西格尚,也是一位雪花照片的摄影家,他的令人销魂的作品经常被工艺美术师用来作为结构图案的模型。日本人中谷宇吉郎和他的同事们,在日本北海道大学实验室的冷房间里,在日本北方雪原上的帐篷里,含辛茹苦二十年,拍摄和研究了成千上万朵的雪花。

但是,尽管雪花的形状千姿百态,却万变不离其宗,所以科学家们才有可能把它们归纳为前面讲过的七种形状。在这七种形状中,六角形雪片和六棱柱状雪晶是雪花的最基本形态,其它五种不过是这两种基本形态的发展、变态或组合。
早在公元前的西汉时代,《韩诗外传》中就指出:“凡草木花多五出,雪花独六出。”雪的基本形状是六角形。但在不同的环境下,却可表现出各种样的形态。

世界上有不少雪花图案收集者,他们收集了各种雪花图案。有人花了毕生精力拍摄了成千上 万张雪花照片,发现将近有六千种彼此不同的雪花,但他死前认为这不过是大自然落到他手中的少部分雪花而已。以致于有人说没有两朵大小和形状完全相同的雪花。

为什么雪花的基本形态是六角形的片状和柱状呢?

这和水汽凝华结晶时的晶体习性有关。水汽凝华结晶成的雪花和天然水冻结的冰都属于六方晶系。我们在博物馆里很容易被那纯洁透明的水晶所吸引。水晶和冰晶一样,都是六方晶系,不过水晶是二氧化硅(SiO2)的结晶,冰晶是水(H2O)的结晶罢了。

六方晶系具有四个结晶轴,其中三个辅轴在一个基面上,互相以60o的角度相交,第四轴(主晶轴)与三个辅轴所形成的基面垂直。六方晶系最典型的代表就象是几何学上的一一个正六面柱体。当水汽凝华结晶的时候,如果主晶轴比其它三个辅轴发育得慢,并且很短,那么晶体就形成片状;倘若主晶轴发育很快,延伸很长,那么晶体就形成柱状。雪花之所以一般是六角形的,是因为沿主晶轴方向晶体生长的速度要比沿三个辅轴方向慢得多的缘故。
千姿百态的雪花
对于一片六角形雪片来说,由于它表面曲率不等(有凸面、平面和凹面),各面上的饱和水汽压力也不同,因此产生了相互间的水汽密度梯度,使水汽发生定向转移。水汽转移的方向是凸面→平面→凹面,也就是从曲率大的表面,移向曲率小的表面。六角形雪片六个棱角上的曲率最大,边棱部分的平面次之,中央部分曲率最小。这样,就使六角形雪片一直处在定向的水汽迁移过程中。由于棱角上水汽向边棱及中央输送,棱角附近的水汽饱和程度下降,因而产生升华现象。中央部分由于获得源源不断的水汽而达到冰面饱和,产生凝华作用。这种凝华结晶的过程不断进行,六角形雪片逐渐演变成为六棱柱状雪晶。(雪片上水汽迁移示意图:fig42)

这是假定外部不输送水汽的理想状况。事实上,事物与周围环境保持着密切的联系,空气里总是或多或少存在着水汽的。如果周围空气输人水汽较少,少到不够雪片的棱角向中央输送水汽的数量,那么雪片向柱状雪晶的发展过程继续进行。在温度很低水汽很少的高纬和极地地区,便因为这个原因经常降落柱状雪晶。

空气里水汽饱和程度较高的时候,出现另外一种情况。这时周围空气不断地向雪片输送水汽,使雪片快速地发生凝华作用。凝华降低了雪片周围空气层中的水汽密度,反过来又促进外层水汽向内部输送。这样,雪片便很快地生长起来。当水汽快速向雪片输送的时候,六个顶角首当其冲,水汽密度梯度最大。来不及向雪片内部输送的水汽,便在顶角上凝华结晶;这时,顶角上会出现一些突出物和枝杈。这些枝叉增长到一定程度,又会分叉。次级分叉与母枝均保持60的角度,这样,就形成了一朵六角星形的雪花。

在高山或极地的晴朗天气里,还可见到一种冰针,象宝石一样闪烁着瑰丽的光彩,人们把它叫做钻石尘。冰针的生长有二种情况:一种是在严寒下(-30℃以下)湿度很小时水汽自发结晶的结果,另一种是在温度较高(-5℃左右)湿度较大时沿着雪片某一条辅轴所在的顶角特别迅速生长的产物,是雪花的畸形发展。

形形色色的雪花晶体在天空生成后,当它们的直径达到50微米时,便能克服空气的浮力而开 始作明显的下降运动,一边飘逸下降一边继续生长变化。这样一来,便产生了形式纷纭繁多的雪花。我们只要把它们接纳在黑呢子或黑天鹅绒上,就能用肉眼初步辨别出它们的形态来。
雪花有多大
诗人李白在形容燕山雪花时有一句著名诗句:“燕山雪花大如席”。雪花真的有那么大吗?其实,雪花是很小的。不要说“大如席”的雪花科学史上没有记录,就是“鹅毛大雪”,也是不容易遇到的。

事实上,我们能够见到的单个雪花,它们的直径一般都在0.5~3.0毫米之间。这样微小的雪花只有在极精确的分析天平上才能称出它们的重量,大约3000~10000个雪花加在一起才有一克重。有位科学家粗略统计了一下,一立方米的雪里面约有60~80亿颗雪花,比地球上的总人口数还要多。

雪花晶体的大小,完全取决于水汽凝华结晶时的温度状况。在非常严寒时形成的雪晶很小,几乎看不见,只有在阳光下闪烁时,人们才能发现它们象金刚石粉末似地存在着。

据研究,温度对雪晶大小存在影响:当气温为-36℃时,雪晶的平均面积是0.017平方毫米;当气温为-24℃时,平均面积是0.034平方毫米;气温为-18℃时,平均面积是0.084平方毫米,-6℃时,为0.256平方毫米,气温在-3℃时,雪晶的平均面积增大到0.811平方毫米。

人们有种错误的感觉,这种感觉常常是从有些文学作品描写天气严寒时,喜欢用“鹅毛大雪”来形容。其实,“鹅毛大雪”是气温接近0℃左右时的产物,并不是严寒气候的象征。相反,雪花越大,说明当时的温度相对比较高。三九严寒很少出现鹅毛大雪,只有在秋末初冬或冬末初春时,才有可能下鹅毛大雪。所谓的鹅毛大雪,其实并不是一颗雪花,而是由许多雪花粘连在一起而形成的。单个的雪花晶体,直径最大也不会超过10毫米,至多象我们指甲那样大小,称不上鹅毛大雪。

在温度相对比较高的情况下,雪花晶体很容易互相联结起来,这种现象称为雪花的并合。尤其当气温接近0℃,空气比铰潮湿的时候,雪花的并合能力特别大,往住成百上千朵雪花并合成一片鹅毛大雪。因此,严格地说,鹅毛大雪并不能称为雪花,它仅仅是许多雪花的聚合体而已。
工降雪
自古以来,老天爷一直是高兴下雪就下雪,不高兴就不下。有没有办法使老天爷根据人类的需要,让它下雪就下雪呢?

办法是有的,这就是人工降雪。

天上的水汽要变成雨雪降下来必须具备两个条件,一个是必须有一定的水汽饱和度(主要与温度有关),另一个是必须有凝结核。因此,人工降雪首先必须天空里有云,没有云就象巧妇难做无米之炊一样,下不了雪。能下雪的云,棸0℃以下的“冷云”。在冷云里,既有水汽凝结的小水滴,也有水汽凝华的小雪晶。但它们都很小很轻,倘若不存在继续生长的条件,它们只能象烟雾尘埃一样悬浮在空中,很难落下来。我们在冬天里经常能看到大块大块的云彩,就是不见雪花飘下来,因为组成这些云彩的雪晶太小,克服不了空气的浮力,降水能力很差。如果在云层里喷撒一些微粒物质,促进雪晶很快地增长到能够克服空气的浮力降落下来,这就是人工降雪的功劳。

喷撒什么物质能够促使雪晶很快增长呢? 早期,人们各显神通采用过许多有趣的方法。这些方法主要有:在地面上纵火燃烧,把大量烟尘放到天空里;用大炮袭击云层;利用风筝高飞云中,然后在风筝上通电,闪放电花;乘坐飞机钻进云层喷洒液态水滴和尘埃微粒。但是,这些方法的效果都很不理想。 直到1946年,人们才发现把很小的干冰微粒投入冷云里,能形成数以百万计的雪晶。当年1l月3日,有人在飞机上把干冰碎粒撒到温度为-20℃的高积云顶部,结果发现雪从这块云层中降落下来。

这里所说的干冰不是由水冻结的冰,而是二氧化碳的固体状态,很象冬天压结实的雪块。干冰的温度很低,在-78.5℃以下。把干冰晶体象天女散花似地喷撒在冷云里,每一颗二氧化碳晶体都成为一个剧冷中心,促使冷云里的水汽、小水滴和小雪晶很快地集结在它的周围,凝华成较大的雪花降落下来。

现在常用碘化银来人工降雪。碘化银是一种黄颜色的化学结晶体,平时作为照相材料里的感光剂使用。碘化银的晶体与雪晶的六角形单体尺寸非常相似,它们单体里的原子排列也十分近似,两者的晶格间距也很接近(碘化银是4.58埃,雪晶是4.52埃)。因此,把碘化银微粒撒在降水能力较差的云层里,使它“冒名”顶替雪晶,便能让云中的水汽和小水滴在“冒名”的晶体上凝华结晶,变成雪花。

怎样把这些凝结核散布到云层中呢?现代人大多使用大炮,把化学药品装在炮弹里,然后用大炮发射到云层里去的。不过这种方法喷撒不均匀,药品浪费较大,增加了人工降雪的成本。还有人把它们装在土火箭里,让火箭飞到云里去喷撒。

一般来说,人工降雪比人工降雨的成功率更大。人工降雨可以增加大约20%的雨量,而在高山高寒地区,人工降雪却能增加30~40%的降水量。这是因为高山高寒地区,温度低,水汽容易达到饱和状态,同时,雪晶比雨滴更容易形成。只要人工给大气增加一些结晶核,比较容易促进降雪。
因为雪是一种晶体,而晶体是规则的几何图形所以雪不是一团一团的
因为叫雪花,她就得像花花一样,漫天飞舞才好看,才让我们向往.
要是一团一团的,那就得叫"雪团"了啊,不好听.
因为水有自己特定的结晶方式

关于雪花和雪粒的形成条件 为什么有时候下的是雪花,有时候下的是小雪粒,他们都是怎么形成的呢?

摘要 我是爱学习的牛老师,请您稍等,我正在根据您的问题给您最好的答案,请您谅解,五分钟内给您回复答案,非常感谢您。

为什么雪花掉下来都是有形状的?还是对称的…为什么?

雪花的形状极多,而且十分美丽.如果把雪花放在放大镜下,可以发现每片雪花都是一幅极其精美的图案,连许多艺术家都赞叹不止。但是,各种各样的雪花形状是怎样形成的呢?雪花大都是六角形的,这是因为雪花属于六方晶系。云中雪花"胚胎"的小冰晶,主要有两种形状。一种呈六棱体状,长而细,叫柱晶,但有时它的两端是尖的,样子象一根针,叫针晶。别一种则呈六角形的薄片状,就象从六棱铅笔上切下来的薄片那样,叫片晶。

如果周围的空气过饱和的程度比较低,冰晶便增长得很慢,并且各边都在均匀地增长。它增大下降时,仍然保持着原来的样子,分别被叫做柱状、针状和片状的雪晶。

如果周围的空气呈高度过饱和状态,那么冰晶在增长过程中不仅体积会增大,而且形状也会变化。最常见的是由片状变为星状。

原来,在冰晶增长的同时,冰晶附近的水汽会被消耗。所以,越靠近冰晶的地方,水汽越稀薄,过饱和程度越低。在紧靠冰晶表面的地方,因为多余的水汽都已凝华在冰晶上了,所以刚刚达到饱和。这样,靠近冰晶处的水汽密度就要比离它远的地方小。水汽就从冰晶周围向冰晶所在处移动。水汽分子首先遇到冰晶的各个角棱和凸出部分,并在这里凝华而使冰晶增长。于是冰晶的各个角棱和凸出部分将首先迅速地增长,而逐渐成为枝叉状。以后,又因为同样的原因在各个枝叉和角棱处长出新的小枝叉来。与此同时,在各个角棱和枝叉之间的凹陷处。空气已经不再是饱和的了。有时,在这里甚至有升华过程,以致水汽被输送到其他地方去。这样就使得角棱和枝叉更为突出,而慢慢地形成了我们熟悉的星状雪花。
雪花形成的条件
天空中的云是由无数的水蒸气和小水点所组成. 在内陆上的云层, 大部分的小水点的直径要比千分之四毫米还要少! 可能很多人会认为水是在摄氏零度时凝结成冰, 但其实这个说法并不完全正确, 以下是大部分科家相信雪花形成的基本条件:

在一般的情况下, 水点并不会互相黏在一起, 它也需要一些基本条件配合.首先, 大气裏需要有著大量的水点, 是要令大气饱和. 同时, 大气温度要徘徊在水凝结的温度, 也即是摄氏零度. 不过, 纯正的水点并不会在这温度下凝固, 这是因为水点裏没有包含一种名为凝固核的粒子. 这种凝固核通常会在摄氏零下十度形成, 并会被水点所包围和凝固. 在天空中, 水点需要黏附在一些物质才能凝固, 大气裏最容易找到的应该是尘埃了, 不过烟雾甚至细菌也可以作为所需的凝结粒子呢!

曾经有一班苏联人对雪花进行了研究, 结果亦支持了以上的说法. 他们使用飞机在天空中投放一些以尘埃做成的人工粒子, 然后收集和量度冰核 (凝结核) , 证实了利用人工粒子形成的雪花比那些天然形成的更大.

雪花形成的过程
当凝结核在摄氏零度以下时, 水点便会开始凝结成冰晶. 由於那些水点是非常细小并且是看不到的. 很多人误以为这是升华作用. 升华作用是指水蒸气没有经过液态的过程而直接变成冰.

当冰晶形成后, 围绕冰晶的水点会凝固并与冰晶黏在一起, 细小的冰晶会吸引更多的水点而逐渐长成更大的冰晶. 直至二至二百个冰晶连系在一起, 形状不同而且独一无二的雪花便会根据大气环境而形成.

雪粒子由天上降至地上的度快慢各异, 极小的晶体下降度近乎零, 一般雪花则以每秒一米的速度, 溶化中的雪还要快好几倍. 每当雪晶碰到过冷的水点时, 它们会立刻凝固在一起, 形成的软粒子便是雪小球, 而整个过程被称为"蒙霜"; 在温和的区域裏. 水分子的增加造就了冰晶的生长,从而形成了雪花. 它那巧夺天工的六角体成为了雪花生长的奥秘, 每个雪花有著至少上亿个水分子,冰晶就是从水平和垂直的方向, 生长成更大更厚的晶体了. 不过, 整个过程都是有著六角对称的特性, 确是不可思议呢!

雪花的生长
雪花形成的时候, 大气裏水气是饱和的, 温度则在摄氏零度以下. 微细的冰晶会渐渐围绕著凝结核. 然后, 冰晶连结在一起而雪花亦随之诞生. 这过程被称为「结晶」. 在结晶过程中, 水分子会以它们的基本排列方式从液态变成固态. 由於冰晶的基本模式是六角稜体, 大部份冰晶的雏形都是六角形的. 当更多的水分子与冰晶结合后, 他们会由第一个六角形开始保持冰晶的形状继续向外生长.

虽然大部份冰晶形成时有著六边对称的特性, 但是它们会因应温度的改变而做成很多不同形状的变化. 若温度低於摄氏零下三十度, 六角柱体的冰晶便会形成. 典型的六角形的扁平片状雪花会在摄氏零下十五度左右时形成. 当温度上升至摄氏零下五度, 无论针状, 柱状抑或一些不能估计的形状的雪花便会产生. 由於雪层越高, 温度越冷, 因此六角柱状的雪花通常会在高云形成. 较低的云层通常会形成六角平面的片状雪花, 而不同形状的结晶会在低云中产生. 不过现实的情形更加复杂, 不为人所知呢!

雪花的大小
很多人会把雪花想像成从天而降的雪, 因此他们会假设雪花会和雪球差不多大小. 事实上, 雪花一词是指个别的雪晶, 而从天空降下来的雪称为雪球, 它聚集了数百甚至数千个细小雪花黏在一起. 现在, 你可以想像得到一个雪花有多大吧.

一般来说,雪晶的直径介乎半毫米至三毫米, 而雪花的大小大概是十毫米, 在一克裏有著三千至一万个这些雪花, 有些较大的雪花直径可能达到二厘米至四厘米( 0.79 英寸至 1.57 英寸), 但偶尔也有一些巨型的雪花,有些特别大的雪花的直径能超过五厘米 ( 2 英寸) 和包含在数百个晶体. 不过, 要长出巨大的雪花是需要完美的条件配合的.

周边的温度是影响雪晶大小的其中一个原因. 在摄氏零下三十六度, 雪晶很小, 只有 0.017 平方毫米. 这时它们是看不见的. 在摄氏零下二十四度, 雪晶的大小是 0.034 平方毫米. 在摄氏零下十八度, 雪花的大小增加至 0.084 平方毫米. 处於摄氏零下六度的温度下, 它们平均有 0.256 平方毫米. 在摄氏零下三度, 雪花的大小增加至 0.811 平方毫米.

雪花的六角形状
我们知道雪晶的六角形状能细分为两大类, 一是片状, 另一类是柱状, 我们经常看到比较美丽的雪花便是那些六边对称的片状雪晶. 它们通常会在温度介乎摄氏零下五度至零下二十度之间形成, 柱状雪花包括了针状和中空柱状, 针状雪晶在温度介乎摄氏零度至摄氏零下五度形成; 中空柱状在是低於摄氏零下二十度形成.

若果我们希望找出大部分冰晶是六角稜体的原因, 我们或许应该首先了解一下水分子. 水分子是由两个氢原子以及一个氧原子 ( 这便是我们常把水称为H2O的原因 ) . 它们以一种很强的键--- 共价键, 黏合在一起.

当液态的水分子被冷却至凝固点, 水分子会互相碰撞, 形成固态冰晶. 然后它们会利用氢键结合在一起. 若分子与分子之间结合, 便会更稳定. 相对来说, 最稳定的排列方式是以六角形状把六个水分子黏在一起.这亦是为何大部份冰晶是六角形的

很多水分子从冰晶周围黏在一起的时候, 它们大部份会黏在六角形冰晶片的角上, 此乃由於六角形的角比边更容易吸引水分子. 因此, 角会是雪花生长的起步点呢!

雪花的独有性
很久以前, 一位科学家曾作一个有关雪花的研究, 他使用显微镜来观察大约五千个雪花的形状. 令他感到出奇的是, 竟然找不到任何两个形状完全相同的雪花. 每一个雪花都拥有自己的独有图案而从不重覆的.

科学家其后尝试找出这个雪花的奥秘, 结果他们发现雪花对於大气环境的改变是极度敏感的. 即使气温或水份子饱和度出现微小的改变, 雪花生长的图案也可能有很明显的改变. 在大气裏, 气温和饱和度是不断改变的. 因此我们很难找到两个完全相同雪晶.

事实上,雪花有多尖锐能反映其生长环境. 例如, 我们能够看到一个片状主体时, 温度大约介乎摄氏零下五度至零下二十度. 如果温度变暖至介乎摄氏零度至五度, 针状分支便会形成. 此外, 雪花在空气中飘浮的时间越长, 图案会越复杂.
所谓雪,其实是冰,冰是晶体再结晶时有自己的结晶方向,由于单个晶粒的形状是是对偶称的,在晶粒长大过程中延伸方向也对称,所以最后形成的雪花就是对称形状的,就像许多的等边三角形按3边对称无限拼接在一起,最后的形状一定是对称的,而非等边三角形及时对称拼接,最后的形状也不会对称。

雪为什么会有形状

为什么雪会有规则的形状?怎么形成的?很好奇。

雪花多呈六角形,花样之所以繁多,是因为冰的分子以六角形为最多,对于六角形片状冰晶来说,由于它的面上、边上和角上 的曲率不同,相应地具有不同的饱和水汽压,其中角上的饱和水汽压最大,边上次之,平面上最小。

在实有水汽压相同的情况下,由于冰晶各部分饱和水汽压不同,其凝华增长的情况也不相同。例如当实有水汽压仅大于平面的饱和水汽压时,水汽只在面上凝华,形成的是柱状雪花。

当实有水汽压大于边上的饱和水汽压时,边上和面上都会发生凝华。由于凝华的速度还与曲率有关,曲率大的地方凝华较快,故在冰晶边上凝华比面上快,多形成片状雪花。

扩展资料

由于降落到地面上的雪花的大小、形状、以及积雪的疏密程度不同,雪是以雪融化后的水来度量的。降雪分为小雪、中雪、大雪和暴雪四个等级。

小雪:0.1~2.4毫米/天;

中雪:2.5~4.9毫米/天;

大雪:5.0~9.9毫米/天;

暴雪:大于等于10毫米/天。

参考资料来源:百度百科-雪

雪花是怎么形成的?雪花是空中的水蒸汽遇冷凝结成的。在一般情况下,水蒸汽先凝成水,然后才能结冰。雪花却是直接由水蒸汽凝结成的。

雪花是什么颜色?看起来,雪花是白的。实际上,雪是冰的晶体,冰晶是无色透明的。可是它的每一面都象一个小镜子,反射光线的能力非常强,就显示出了白颜色。

雪花有多大?雪花最大的直径还超过2毫米。我们常见的鹅毛大雪,那种雪片似在降落过程中,许多雪花粘结在一块形成的。

雪花有多重?雪花非常轻,五千朵到一万朵雪花才有一克重。一立方米新雪有六十亿朵到八十亿朵雪花。

雪花是什么形状?雪花的形状千差万别,每一朵雪花都是一件精致的艺术品。到现在,已经知道雪花有两万种不同的图案。不过它基本上是六角形的。 ()漂亮的雪花是怎样形成的?显微镜下的雪花真漂亮,你知道雪花是怎么形成的吗?

上世纪初,对冰雪做过专项研究的日本物理学家中谷宇吉郎博士曾把雪比做“来自天空的信使”,并查明千差万别的雪的结晶形式取决于高空气温高低和水蒸气的多少。如今,北海道大学低温研究所的古川义纯副教授作为中谷博士的后继者,在雪的结晶形状方面正在深入开展研究。
雪花不会自己凭空产生,它必须依托同温层以下空气中一颗颗肉眼看不到的微尘粒子做晶核,水蒸气的水分子在冷空气作用下围着它一层又一层地凝结,晶核就从中央向外长大。形成一颗雪晶体大约要用5分钟时间,在这段时间里,造雪环境中的气流始终升降浮沉,动荡不定,但水蒸气必须保持等量作用于晶核的周边。空中云层的厚度、湿度、温度对雪花的形态有极大的影响,星形雪花的形成要求较大的湿度,而湿度较小的云层易于形成片状、粉末状雪花。其实雪花的个体是极其微小的,直径在0.5-3mm之间,5000颗雪花放在精密天平上才不过1克,在显微镜下观察非常美丽。普通水的水质取决于重水含量,含量高水质差,相反水质较好,通常情况下7千克水含有1克重水,而7千克雪水只含0.25克重水,可见雪水生化性能要好得多。雪水丰足,开春麦田就长得好。春耕浸泡种子时,重水比例大发芽率低,如果用雪水浸湿种子就如鱼得水了。
云层是雪花孕育的地方,雪花产生于云层中的这些小晶核,晶核生长的形状有三种趋势:长而细的六棱柱形晶柱、两头尖尖有如一根针的晶针和很薄的六边形晶片。如果它们周围的水气浓度较低,冰晶的增长就很慢,而且各边均匀增长;如果周围水气浓度较大,那么增长过程中不仅体积会增大,形状也会改变,最常见的就是天空中飘落的六边形雪花。为什么都倾向于六边形呢?原来冰晶增长时要消耗附近的水气,所以,越靠近冰晶的地方水气越稀薄,稍远处的水气自然过来补充,它们首先遇到的就是正在向前伸展的尖角,于是,各个尖角迅速加长,逐渐成为树枝状。同样原因,这些“树枝”上又长出新小枝杈,周而复始就形成了我们所见到的六边形雪花。形成雪花之前的冰晶受周围环境的影响,位于底面上的正六边形和侧面长方体的晶体生长速度出现差异,形状也相应发生变化,比如气温会给结晶的表面带来微妙变化,接近0°C度时底面水平扩展成六边形,-5°C时形成针状,降到-5~-10°C时侧面上开始生成正六棱柱体及侧面镂空的六棱柱体,-15°C时形成树枝状,在降至-10~-21°C时,正六边形又开始扩展,继而再生成六棱柱体。
周围水蒸气含量较少时,生成过程也较慢,而且不易出现复杂形状。相反,水蒸气含量越大,生成速度越快形状也越复杂。被人们称做“雪花”的树枝状雪晶往往生成于-15°C左右、含有大量水蒸气的环境中。尽管晶体的形成速度取决于温度及水蒸气浓度,但空气中的其他气体也会影响它的形成。实验表明,在只有水蒸气的真空空间里形成的冰晶几乎都有单三棱柱体,而在天空中形成的晶体则呈现针状和六棱柱形状。经过计算机计算可以再现冰晶向六个方向延伸的形状,而中途分*,呈现树枝状的原因却始终无法解释,如照片所示,美妙无比的点对称的分枝方式,其产生机理,至今仍是一个难解之谜。

早在公元前的西汉时代,《韩诗外传》中就指出:“凡草木花多五出,雪花独六出。”雪的基本形状是六角形。但在不同的环境下,却可表现出各种样的形态。

世界上有不少雪花图案收集者,他们收集了各种雪花图案。有人花了毕生精力拍摄了成千上 万张雪花照片,发现将近有六千种彼此不同的雪花,但他死前认为这不过是大自然落到他手中的少部分雪花而已。以致于有人说?]有两朵大小和形状完全相同的雪花。

为什么雪花的基本形态是六角形的片状和柱状呢?

这和水汽凝华结晶时的晶体习性有关。水汽凝华结晶成的雪花和天然水冻结的冰都属于六方晶系。我们在博物馆里很容易被那纯洁透明的水晶所吸引。水晶和冰晶一样,都是六方晶系,不过水晶是二氧化硅(SiO2)的结晶,冰晶是水(H2O)的结晶罢了。

六方晶系具有四个结晶轴,其中三个辅轴在一个基面上,互相以60o的角度相交,第四轴(主晶轴)与三个辅轴所形成的基面垂直。六方晶系最典型的代表就象是几何学上的一一个正六面柱体。当水汽凝华结晶的时候,如果主晶轴比其它三个辅轴发育得慢,并且很短,那么晶体就形成片状;倘若主晶轴发育很快,延伸很长,那么晶体就形成柱状。雪花之所以一般是六角形的,是因为沿主晶轴方向晶体生长的速度要比沿三个辅轴方向慢得多的缘故。
文章标题: 为什么有时候雪花落下来是单片的雪花,有时候是一小团雪,是不规则的形状
文章地址: http://www.xdqxjxc.cn/jingdianwenzhang/133104.html
文章标签:不规则  花落  雪花  形状  有时候
Top