欢迎访问喜蛋文章网
你的位置:首页 > 经典文章 > 文章正文

人类能否制造一个全世界每个地区能同时直接用耳朵听见的声音

时间: 2023-07-04 12:02:34 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 89次

人类能否制造一个全世界每个地区能同时直接用耳朵听见的声音

仿生学的资料

bbbbbbbbbbb
蝴蝶
五彩的蝴蝶颜色粲然,如重月纹凤蝶、褐脉金斑蝶等,尤其是萤光翼凤蝶,其后翊在阳光下时而金黄,时而翠绿,有时还由紫变蓝。科学家通过对蝴蝶色彩的研究,为军事防御带来了极大的稗益。在二战期间,德军包围了列宁格勒,企图用轰炸机摧毁其军事目标和其他防御设施。苏联昆虫学家施万维奇根据当时人们对伪装缺乏认识的情况,提出利用蝴蝶的色彩在花丛中不易被发现的道理,在军事设施上覆盖蝴蝶花纹般的伪装。因此,尽管德军费尽心机,但列宁格勒的军事基地仍然无恙,为赢得最后的胜利奠定了坚实的基础。根据同样的原理,后来人们还生产出了迷彩服,大大减少了战斗中的伤亡。
人造卫星在太空中由于位置的不断变化可引起温度骤然变化,有时温差可高达两、三百度,严重影响许多仪器的正常工作。科学家们受蝴蝶身上的鳞片会随阳光的照射方向自动变换角度而调节体温的启发,将人造卫星的控温系统制成了叶片反两面辐射、散热能力相差很大的百叶窗样式,在每扇窗的转动位置安装有对温度敏感的金属丝,随温度变化可调节窗的开合,从而保持了人造卫星内部温度的恒定,解决了航天事业中的一大难题。

甲虫
甲虫自卫时,可喷射出具有恶臭的高温液体“炮弹”,以迷惑、刺激和惊吓敌害。科学家将其解剖后发现甲虫体内有3个小室,分别储有二元酚溶液、双氧水和生物酶。二元酚和双氧水流到第三小室与生物酶混合发生化学反应,瞬间就成为100℃的毒液,并迅速射出。这种原理目前已应用于军事技术中。二战期间,德国纳粹为了战争的需要,据此机理制造出了一种功率极大且性能安全可靠的新型发动机,安装在飞航式导弹上,使之飞行速度加快,安全稳定,命中率提高,英国伦敦在受其轰炸时损失惨重。美国军事专家受甲虫喷射原理的启发研制出了先进的二元化武器。这种武器将两种或多种能产生毒剂的化学物质分装在两个隔开的容器中,炮弹发射后隔膜破裂,两种毒剂中间体在弹体飞行的8—10秒内混合并发生反应,在到达目标的瞬间生成致命的毒剂以杀伤敌人。它们易于生产、储存、运输,安全且不易失效。萤火虫可将化学能直接转变成光能,且转化效率达100%,而普通电灯的发光效率只有6%。人们模仿萤火虫的发光原理制成的冷光源可将发光效率提高十几倍,大大节约了能量。另外,根据甲虫的视动反应机制研制成功的空对地速度计已成功地应用于航空事业中。

蜻蜓
蜻蜓通过翅膀振动可产生不同于周围大气的局部不稳定气流,并利用气流产生的涡流来使自己上升。蜻蜓能在很小的推力下翱翔,不但可向前飞行,还能向后和左右两侧飞行,其向前飞行速度可达72公里/小时。此外,蜻蜓的飞行行为简单,仅靠两对翅膀不停地拍打。科学家据此结构基础研制成功了直升飞机。飞机在高速飞行时,常会引起剧烈振动,甚至有时会折断机翼而引起飞机失事。蜻蜓依靠加重的翅膀在高速飞行时安然无恙,于是人们效仿蜻蜓在飞机的两翼加上了平衡重锤,解决了因高速飞行而引起振动这个令人棘手的问题。
为了研究滑翔飞行和碰撞的空气动力学以及其飞行的效率,一个四叶驱动,用远程水平仪控制的机动机翼(翅膀)模型被研制,并第一次在风洞内测试了各项飞行参数。
第二个模型试图安装一个以更快频率飞行的翅膀,达到每秒18次震动的速度。有特色的是,这个模型采用了可变可调节前后两对机翼之间相差的装置。
研究的中心和长远目标,是要研究使用“翅膀”驱动的飞机表现,以及与传统的螺旋推动器驱动的飞机效率的比较等等。

苍蝇
家蝇的特别之处在于它的快速的飞行技术,这使得它很难被人类抓住。即使在它的后面也很难接近它。它设想到了每一种情况,非常小心,并能快速移动。那么,它是怎么做到的呢?
昆虫学家研究发现,苍蝇的后翅退化成一对平衡棒。当它飞行时,平衡棒以一定的频率进行机械振动,可以调节翅膀的运动方向,是保持苍蝇身体平衡导航仪。科学家据此原理研制成一代新型导航仪——振动陀螺仪,大在改进了飞机的飞行性能,可使飞机自动停止危险的滚翻飞行,在机体强烈倾斜时还能自动恢复平衡,即使是飞机在最复杂的急转弯时也万无一失。苍蝇的复眼包含4000个可独立成像的单眼,能看清几乎360度范围内的物体。在蝇眼的启示下,人们制成了由1329块小透镜组成的一次可拍1329张高分辨率照片的蝇眼照像机,在军事、医学、航空、航天上被广泛应用。苍蝇的嗅觉特别灵敏并能对数十种气味进行快速分析且可立即作出反应。科学家根据苍蝇嗅觉器官的结构,把各种化学反应转变成电脉冲的方式,制成了十分灵敏的小型气体分析仪,目前已广泛应用于宇宙飞船、潜艇和矿井等场所来检测气体成分,使科研、生产的安全系数更为准确、可靠。

蜂类
蜂巢由一个个排列整齐的六棱柱形小蜂房组成,每个小蜂房的底部由3个相同的菱形组成,这些结构与近代数学家精确计算出来的——菱形钝角109○28’,锐角70○32’完全相同,是最节省材料的结构,且容量大、极坚固,令许多专家赞叹不止。人们仿其构造用各种材料制成蜂巢式夹层结构板,强度大、重量轻、不易传导声和热,是建筑及制造航天飞机、宇宙飞船、人造卫星等的理想材料。蜜蜂复眼的每个单眼中相邻地排列着对偏振光方向十分敏感的偏振片,可利用太阳准确定位。科学家据此原理研制成功了偏振光导航仪,被广泛用于航海事业中。

其它
跳马蚤的跳跃本领十分高强,航空专家对此进行大最研究,英国一飞机制造公司从其垂直起跳的方式受到启发,成功制造出了一种几乎能垂直起落的鹞式飞机。现代电视技术根据昆虫单复眼的构造特点,造出了大屏幕彩电,又可将一台台小彩电荧光屏组成一个大画面,且可在同一屏幕上任意位置框出某几个特定的小画面,既可播映相同的画面,又可播映不同的画面。科学家根据昆虫复眼的结构特点研制成功的多孔径光学系统装置,更易于搜索到目标,已在国外一些重要武器系统中应用。根据某些水生昆虫的组成复眼的单眼之间相互抑制的原理,制成的侧抑制电子模型,用于各类摄影系统,拍出的照片可增强图像边缘反差和突出轮廓,还可用来提高雷达的显示灵敏度,也可用于文字和图片识别系统的预处理工作。美国利用昆虫复眼加工信息及定向导航原理,研制了具有很大实用价值的仿昆虫复眼的末制导导引头的工程模型。日本利用昆虫形态及特性开发研制了六足机器人等工学机器和建筑物的新构造方式。
昆虫在亿万年的进化过程中,随着环境的变迁而逐渐进化,都在不同程度地发展着各自的生存本领。随着社会的发展,人们对昆虫的各种生命活动掌握得越来越多,越来越意识到昆虫对人类的重要性,再加上信息技术特别是计算机新一代生物电子技术在昆虫学上的应用,模拟昆虫的感应能力而研制的检测物质种类和浓度的生物传感器,参照昆虫神经结构开发的能够模仿大脑活动的计算机等等一系列的生物技术工程,将会由科学家的设想变为现实,并进入各个领域,昆虫将会为人类做出更大的贡献
1。由令人讨厌的苍蝇,仿制成功一种十分奇特的小型气体分析仪。已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。
2。从萤火虫到人工冷光;
3。电鱼与伏特电池;
4。水母的顺风耳,仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义。
5。人们根据蛙眼的视觉原理,已研制成功一种电子蛙眼。这种电子蛙眼能像真的蛙眼那样,准确无误地识别出特定形状的物体。把电子蛙眼装入雷达系统后,雷达抗干扰能力大大提高。这种雷达系统能快速而准确地识别出特定形状的飞机、舰船和导弹等。特别是能够区别真假导弹,防止以假乱真。
电子蛙眼还广泛应用在机场及交通要道上。在机场,它能监视飞机的起飞与降落,若发现飞机将要发生碰撞,能及时发出警报。在交通要道,它能指挥车辆的行驶,防止车辆碰撞事故的发生。
6。根据蝙蝠超声定位器的原理,人们还仿制了盲人用的“探路仪”。这种探路仪内装一个超声波发射器,盲人带着它可以发现电杆、台阶、桥上的人等。如今,有类似作用的“超声眼镜”也已制成。
7。模拟蓝藻的不完全光合器,将设计出仿生光解水的装置,从而可获得大量的氢气。
8。根据对人体骨胳肌肉系统和生物电控制的研究,已仿制了人力增强器——步行机。
9。现代起重机的挂钩起源于许多动物的爪子。
10。屋顶瓦楞模仿动物的鳞甲。
11。船桨模仿的是鱼的鳍。
12。锯子学的是螳螂臂,或锯齿草。
13。苍耳属植物获取灵感发明了尼龙搭扣。
14。嗅觉灵敏的龙虾为人们制造气味探测仪提供了思路。
15。壁虎脚趾对制造能反复使用的粘性录音带提供了令人鼓舞的前景。
16。贝用它的蛋白质生成的胶体非常牢固,这样一种胶体可应用在从外科手术的缝合到补船等一切事情上。
回答者: 露密儿 - 见习魔法师 二级 3-27 18:44
蜻蜓——直升机;青蛙——蛙眼雷达;蚊子——蚊式战斗机;
苍蝇——蝇眼照相机;蝴蝶——迷彩服;海豚——潜艇
回答者: 飞羽领主 - 见习魔法师 三级 3-27 18:56
。由令人讨厌的苍蝇,仿制成功一种十分奇特的小型气体分析仪。已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。
2。从萤火虫到人工冷光;
3。电鱼与伏特电池;
4。水母的顺风耳,仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义。
5。人们根据蛙眼的视觉原理,已研制成功一种电子蛙眼。这种电子蛙眼能像真的蛙眼那样,准确无误地识别出特定形状的物体。把电子蛙眼装入雷达系统后,雷达抗干扰能力大大提高。这种雷达系统能快速而准确地识别出特定形状的飞机、舰船和导弹等。特别是能够区别真假导弹,防止以假乱真。
电子蛙眼还广泛应用在机场及交通要道上。在机场,它能监视飞机的起飞与降落,若发现飞机将要发生碰撞,能及时发出警报。在交通要道,它能指挥车辆的行驶,防止车辆碰撞事故的发生。
6。根据蝙蝠超声定位器的原理,人们还仿制了盲人用的“探路仪”。这种探路仪内装一个超声波发射器,盲人带着它可以发现电杆、台阶、桥上的人等。如今,有类似作用的“超声眼镜”也已制成。
7。模拟蓝藻的不完全光合器,将设计出仿生光解水的装置,从而可获得大量的氢气。
8。根据对人体骨胳肌肉系统和生物电控制的研究,已仿制了人力增强器——步行机。
9。现代起重机的挂钩起源于许多动物的爪子。
10。屋顶瓦楞模仿动物的鳞甲。
11。船桨模仿的是鱼的鳍。
12。锯子学的是螳螂臂,或锯齿草。
13。苍耳属植物获取灵感发明了尼龙搭扣。
14。嗅觉灵敏的龙虾为人们制造气味探测仪提供了思路。
15。壁虎脚趾对制造能反复使用的粘性录音带提供了令人鼓舞的前景。
16。贝用它的蛋白质生成的胶体非常牢固,这样一种胶体可应用在从外科手术的缝合到补船等一切事情上。
17。蜻蜓——直升机
18。青蛙——蛙眼雷达
19。蚊子——蚊式战斗机
20。苍蝇——蝇眼照相机
21。蝴蝶——迷彩服
22。海豚——潜艇
回答者: uu2002006 - 魔法学徒 一级 3-30 22:16
水母的顺风耳

“燕子低飞行将雨,蝉鸣雨中天放晴。”生物的行为与天气的变化有一定关系。沿海渔民都知道,生活在沿岸的鱼和水母成批地游向大海,就预示着风暴即将来临。

水母,又叫海蜇,是一种古老的腔肠动物,早在5亿年前,它就漂浮在海洋里了。这种低等动物有预测风暴的本能,每当风暴来临前,它就游向大海避难去了。

原来,在蓝色的海洋上,由空气和波浪摩擦而产生的次声波 (频率为每秒8—13次),总是风暴来临的前奏曲。这种次声波人耳无法听到,小小的水母却很敏感。仿生学家发现,水母的耳朵的共振腔里长着一个细柄,柄上有个小球,球内有块小小的听石,当风暴前的次声波冲击水母耳中的听石时,听石就剌激球壁上的神经感受器,于是水母就听到了正在来临的风暴的隆隆声。

仿生学家仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,相当精确地模拟了水母感受次声波的器官。把这种仪器安装在舰船的前甲板上,当接受到风暴的次声波时,可令旋转360°的喇叭自行停止旋转,它所指的方向,就是风暴前进的方向;指示器上的读数即可告知风暴的强度。这种预测仪能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义。
从萤火虫到人工冷光

自从人类发明了电灯,生活变得方便、丰富多了。但电灯只能将电能的很少一部分转变成可见光,其余大部分都以热能的形式浪费掉了,而且电灯的热射线有害于人眼。那么,有没有只发光不发热的光源呢? 人类又把目光投向了大自然。

在自然界中,有许多生物都能发光,如细菌、真菌、蠕虫、软体动物、甲壳动物、昆虫和鱼类等,而且这些动物发出的光都不产生热,所以又被称为“冷光”。

在众多的发光动物中,萤火虫是其中的一类。萤火虫约有1 500种,它们发出的冷光的颜色有黄绿色、橙色,光的亮度也各不相同。萤火虫发出冷光不仅具有很高的发光效率,而且发出的冷光一般都很柔和,很适合人类的眼睛,光的强度也比较高。因此,生物光是一种人类理想的光。

科学家研究发现,萤火虫的发光器位于腹部。这个发光器由发光层、透明层和反射层三部分组成。发光层拥有几千个发光细胞,它们都含有荧光素和荧光酶两种物质。在荧光酶的作用下,荧光素在细胞内水分的参与下,与氧化合便发出荧光。萤火虫的发光,实质上是把化学能转变成光能的过程。

早在40年代,人们根据对萤火虫的研究,创造了日光灯,使人类的照明光源发生了很大变化。近年来,科学家先是从萤火虫的发光器中分离出了纯荧光素,后来又分离出了荧光酶,接着,又用化学方法人工合成了荧光素。由荧光素、荧光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充满爆炸性瓦斯的矿井中当闪光灯。由于这种光没有电源,不会产生磁场,因而可以在生物光源的照明下,做清除磁性水雷等工作。

现在,人们已能用掺和某些化学物质的方法得到类似生物光的冷光,作为安全照明用。
回答者: 糖果小M - 初入江湖 二级 4-1 10:45
仿生学举15个例子:
1。由令人讨厌的苍蝇,仿制成功一种十分奇特的小型气体分析仪。已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。
2。从萤火虫到人工冷光;
3。电鱼与伏特电池;
4。水母的顺风耳,仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义。
5。人们根据蛙眼的视觉原理,已研制成功一种电子蛙眼。这种电子蛙眼能像真的蛙眼那样,准确无误地识别出特定形状的物体。把电子蛙眼装入雷达系统后,雷达抗干扰能力大大提高。这种雷达系统能快速而准确地识别出特定形状的飞机、舰船和导弹等。特别是能够区别真假导弹,防止以假乱真。
电子蛙眼还广泛应用在机场及交通要道上。在机场,它能监视飞机的起飞与降落,若发现飞机将要发生碰撞,能及时发出警报。在交通要道,它能指挥车辆的行驶,防止车辆碰撞事故的发生。
6。根据蝙蝠超声定位器的原理,人们还仿制了盲人用的“探路仪”。这种探路仪内装一个超声波发射器,盲人带着它可以发现电杆、台阶、桥上的人等。如今,有类似作用的“超声眼镜”也已制成。
7。模拟蓝藻的不完全光合器,将设计出仿生光解水的装置,从而可获得大量的氢气。
8。根据对人体骨胳肌肉系统和生物电控制的研究,已仿制了人力增强器——步行机。
9。现代起重机的挂钩起源于许多动物的爪子。
10。屋顶瓦楞模仿动物的鳞甲。
11。船桨模仿的是鱼的鳍。
12。锯子学的是螳螂臂,或锯齿草。
13。苍耳属植物获取灵感发明了尼龙搭扣。
14。嗅觉灵敏的龙虾为人们制造气味探测仪提供了思路。
15。壁虎脚趾对制造能反复使用的粘性录音带提供了令人鼓舞的前景。
16。贝用它的蛋白质生成的胶体非常牢固,这样一种胶体可应用在从外科手术的缝合到补船等一切事情上

乌贼和鱼雷诱饵 乌贼体内的囊状物能分泌黑色液体,遇到危险时它便释放出这种黑色液体,诱骗攻击者上当。潜艇设计者们仿效乌贼的这一功能读者设计出了鱼雷诱饵。鱼雷诱醋似袖珍潜艇,可按潜艇的原航向航行,航速不变,也可模拟噪音、螺旋节拍、声信号和多普勒音调变化等。正是它这种惟妙惟肖的表演,令敌潜艇或攻击中的鱼雷真假难辩,最终使潜艇得以逃脱。

蜘蛛和装甲 生物学家发现蜘蛛丝的强度相当于同等体积的钢丝的5倍。受此启发,英国剑桥一所技术公司试制成犹如蜘蛛丝一样的高强度纤维。用这种纤维做成的复合材料可以用来做防弹衣、防弹车、坦克装甲车等结构材料。

长颈鹿和“抗荷服” 长颈鹿是目前世界上最高的动物,其大脑和心脏的距离约3米,完全是靠高达160~260毫米汞柱的血压把血液送到大脑的。按一般分析,当长颈鹿低头饮水时,大脑的位置低于心脏,大量的血液会涌入大脑,使血压更加增高,那么长颈鹿会在饮水时得脑充血或血管破烈等疾病而死。但是裹在长颈鹿身上的一层、厚皮紧紧箍住了血管,限制了血压,飞机设计师和航空生物学家依照长颈鹿皮肤原理,设计出一种新颖的“抗荷服”,从而解决了超高速歼击机驾驶员在突然加速爬升时因脑部缺血而引起的痛苦。这种“抗荷服”内有一装置,当飞机加速时可压缩空气,也能对血管产生相应的压力,这比长颈鹿的厚皮更高明了。

鲸鱼和潜艇的“鲸背效应” 当代核潜艇能长时间潜航于冰海之下,但若在冰下发射导弹,则必须破冰上浮,这就碰到了力学上的难题。潜舴专家从鲸鱼每隔10分钟必须破冰呼吸一次中得到启迪,在潜艇顶部突起的指挥台围壳和上层建筑方面,作了加强材料力度和外形仿鲸背处理,果然取得了破冰时的“鲸背效应”。

蝴蝶和卫星控温系统 遨游太空的人造卫星,当受到阳光强烈辐射时,卫星温度会高达200摄氏度;而在阴影区域,卫星温度会下降至零下200摄氏度左右,这很容易烤坏或冻坏卫星上的精密仪器仪表,它一度曾使航天科学家伤透了脑筋。后来,人们从蝴蝶身上受到启迪。原来,蝴蝶身体表面生长着一层细小的鳞片,这些鳞片有调节体温的作用。每当气温上升、阳光直射时,鳞片自动张开,以减少阳光的辐射角度,从而减少对阳光热能的吸收;当外界气温下降时,鳞片自动闭合,紧贴体表,让阳光直射鳞片,从而把体温控制在正常范围之内。科学家经过研究,为人造地球卫星设计了一种犹如蝴蝶鳞片般的控温系统。
参考资料:百度知道
回答者: 13019072708 - 试用期 一级 4-2 11:39
11111111111
回答者: 死神布雷克 - 初入江湖 二级 4-5 17:41
蝙蝠-雷达
小鸟-飞机
青蛙-电子蛙眼
鲨鱼-潜水艇
变色龙-便衣
鲸鱼-提高轮船速度
蜻蜓-让飞机的机翼不会破碎
长颈鹿-抗荷服
海母-暴雨检查器
萤火虫-人工冷光
龙虾-气味探测仪
回答者: 496500515 - 试用期 一级 4-5 21:07
苍蝇,是细菌的传播者,谁都讨厌它。可是苍蝇的楫翅(又叫平衡棒)是“天然导航仪”,人们模仿它制成了“振动陀螺仪”。这种仪器目前已经应用在火箭和高速飞机上,实现了自动驾驶。苍蝇的眼睛是一种“复眼”,由30O0多只小眼组成,人们模仿它制成了“蝇眼透镜”。“蝇眼透镜”是用几百或者几千块小透镜整齐排列组合而成的,用它作镜头可以制成“蝇眼照相机”,一次就能照出千百张相同的相片。这种照相机已经用于印刷制版和大量复制电子计算机的微小电路,大大提高了工效和质量。“蝇眼透镜”是一种新型光学元件,它的用途很多。
鱼儿在水中有自由来去的本领,人们就模仿鱼类的形体造船,以木桨仿鳍。相传早在大禹时期,我国古代劳动人民观察鱼在水中用尾巴的摇摆而游动、转弯,他们就在船尾上架置木桨。通过反复的观察、模仿和实践,逐渐改成橹和舵,增加了船的动力,掌握了使船转弯的手段。这样,即使在波涛滚滚的江河中,人们也能让船只航行自如。
四百多年前,意大利人利奥那多·达·芬奇和他的助手对鸟类进行仔细的解剖,研究鸟的身体结构并认真观察鸟类的飞行。设计和制造了一架扑翼机,这是世界上第一架人造飞行器。

在第一次世界大战时期,出于军事上的需要,为使舰艇在水下隐蔽航行而制造出潜水艇。当工程技术人员在设计原始的潜艇时,是先用石块或铅块装在潜艇上使它下沉,如果需要升至水面,就将携带的石块或铅块扔掉,使艇身回到水面来。以后经过改进,在潜艇上采用浮箱交替充水和排水的方法来改变潜艇的重量。以后又改成压载水舱,在水舱的上部设放气阀,下面设注水阀,当水舱灌满海水时,艇身重量增加使可它潜入水中。需要紧急下潜时,还有速潜水舱,待艇身潜入水中后,再把速潜水舱内的海水排出。如果一部分压载水舱充水,另一部分空着,潜水艇可处于半潜状态。潜艇要起浮时,将压缩空气通入水舱排出海水,艇内海水重量减轻后潜艇就可以上浮。如此优越的机械装置实现了潜艇的自由沉浮。但是后来发现鱼类的沉浮系统比人们的发明要简单得多,鱼的沉浮系统仅仅是充气的鱼鳔。鳔内不受肌肉的控制,而是依靠分泌氧气进入鳔内或是重新吸收鳔内一部分氧气来调节鱼鳔中气体含量,促使鱼体自由沉浮。然而鱼类如此巧妙的沉浮系统,对于潜艇设计师的启发和帮助已经为时过迟了。
声音是人们生活中不可缺少的要素。通过语言,人们交流思想和感情,优美的音乐使人们获得艺术的享受,工程技术人员还把声学系统应用在工业生产和军事技术中,成为颇为重要的信息之一。自从潜水艇问世以来,随之而来的就是水面的舰船如何发现潜艇的位置以防偷袭;而潜艇沉入水中后,也须准确测定敌船方位和距离以利攻击。因此,在第一次世界大战期间,在海洋上,水面与水中敌对双方的斗争采用了各种手段。海军工程师们也利用声学系统作为一个重要的侦察手段。首先采用的是水听器,也称噪声测向仪,通过听测敌舰航行中所发出的噪声来发现敌舰。只要周围水域中有敌舰在航行,机器与螺旋桨推进器便发出噪声,通过水听器就能听到,能及时发现敌人。但那时的水听器很不完善,一般只能收到本身舰只的噪声,要侦听敌舰,必须减慢舰只航行速度甚至完全停车才能分辨潜艇的噪音,这样很不利于战斗行动。不久,法国科学家郎之万(1872~1946)研究成功利用超声波反射的性质来探测水下舰艇。用一个超声波发生器,向水中发出超声波后,如果遇到目标便反射回来,由接收器收到。根据接收回波的时间间隔和方位,便可测出目标的方位和距离,这就是所谓的声纳系统。人造声纳系统的发明及在侦察敌方潜水艇方面获得的突出成果,曾使人们为之惊叹不已。岂不知远在地球上出现人类之前,蝙蝠、海豚早已对“回声定位”声纳系统应用自如了。
回答者: ぁ快乐女孩ぁ - 魔法学徒 一级 4-6 18:37
乌贼和鱼雷诱饵 乌贼体内的囊状物能分泌黑色液体,遇到危险时它便释放出这种黑色液体,诱骗攻击者上当。潜艇设计者们仿效乌贼的这一功能读者设计出了鱼雷诱饵。鱼雷诱醋似袖珍潜艇,可按潜艇的原航向航行,航速不变,也可模拟噪音、螺旋节拍、声信号和多普勒音调变化等。正是它这种惟妙惟肖的表演,令敌潜艇或攻击中的鱼雷真假难辩,最终使潜艇得以逃脱。

蜘蛛和装甲 生物学家发现蜘蛛丝的强度相当于同等体积的钢丝的5倍。受此启发,英国剑桥一所技术公司试制成犹如蜘蛛丝一样的高强度纤维。用这种纤维做成的复合材料可以用来做防弹衣、防弹车、坦克装甲车等结构材料。

长颈鹿和“抗荷服” 长颈鹿是目前世界上最高的动物,其大脑和心脏的距离约3米,完全是靠高达160~260毫米汞柱的血压把血液送到大脑的。按一般分析,当长颈鹿低头饮水时,大脑的位置低于心脏,大量的血液会涌入大脑,使血压更加增高,那么长颈鹿会在饮水时得脑充血或血管破烈等疾病而死。但是裹在长颈鹿身上的一层、厚皮紧紧箍住了血管,限制了血压,飞机设计师和航空生物学家依照长颈鹿皮肤原理,设计出一种新颖的“抗荷服”,从而解决了超高速歼击机驾驶员在突然加速爬升时因脑部缺血而引起的痛苦。这种“抗荷服”内有一装置,当飞机加速时可压缩空气,也能对血管产生相应的压力,这比长颈鹿的厚皮更高明了。
仿生设计学

仿生设计学,亦可称之为设计仿生学(Design Bionics),它是在仿生学和设计学的基础上发展起来的一门新兴边缘学科,主要涉及到数学、生物学、电子学、物理学、控制论、信息论、人机学、心理学、材料学、机械学、动力学、工程学、经济学、色彩学、美学、传播学、伦理学等相关学科。
仿生设计学与旧有的仿生学成果应用不同,它是以自然界万事万物的“形”、“色”、“音”、“功能”、“结构”等为研究对象,有选择地在设计过程中应用这些特征原理进行的设计,同时结合仿生学的研究成果,为设计提供新的思想、新的原理、新的方法和新的途径。在某种意义上,仿生设计学可以说是仿生学的延续和发展,是仿生学研究成果在人类生存方式中的反映。
仿生设计学作为人类社会生产活动与自然界的锲合点,使人类社会与自然达到了高度的统一,正逐渐成为设计发展过程中新的亮点。

自古以来,自然界就是人类各种科学技术原理及重大发明的源泉。生物界有着种类繁多的动植物及物质存在,它们在漫长的进化过程中,为了求得生存与发展,逐渐具备了适应自然界变化的本领。人类生活在自然界中,与周围的生物作“邻居”,这些生物各种各样的奇异本领,吸引着人们去想象和模仿。人类运用其观察、思维和设计能力,开始了对生物的模仿,并通过创造性的劳动,制造出简单的工具,增强了自己与自然界斗争的本领和能力。
人类最初使用的工具——木棒和石斧,无疑是使用的天然木棒和天然石块;骨针的使用,无疑是鱼刺的模仿……所有这些工具的创造、生活方式的选择都不能说是人类凭空想象出来的,只能说是对自然中存在的物质及某种构成方式的直接模拟,是人类初级创造阶段,也可以说是仿生设计的起源和雏形,它们虽然是比较粗糙的、表面的,但却是我们今天得以发展的基础。
在我国,早就有着模仿生物的事例。相传在公元前三千多年,我们的祖先有巢氏模仿鸟类在树上营巢,以防御猛兽的伤害;四千多年前,我们的祖先“见飞蓬转而知为车”,即见到随风旋转的飞蓬草而发明轮子,做有装成轮子的车。古代庙宇中大殿之前的山门的建造,就其建筑结构来看,颇有点像大象的架势,柱子又圆又粗,仿佛像大象的腿。
我国古代勤劳勇敢的劳动人民对于绚丽的天空、翱翔的苍鹰早就有着各种美妙的幻想。根据秦汉时期史书记载,两千多年前,我国人民就发明了风筝,并且应用于军事联络。春秋战国时代,鲁国匠人鲁班,本名公输般,首先开始研制能飞的木鸟;并且他从一种能划破皮肤的带齿的草叶得到启示而发明了锯子。据《杜阳杂编》记载,唐朝有个韩志和,“善雕木作鸾、鹤、鸦、鹊之状,饮啄动静与真无异,以关戾置于腹内,发之则凌云奋飞,可高达三丈至一二百步外,始却下。”西汉时期,有人用鸟的羽毛做成翅膀,从高台上飞下来,企图模仿鸟的飞行。以上几例,足以说明我国古代劳动人民对鸟类的扑翼和飞行,进行了细致的观察和研究,这也是最早的仿生设计活动之一。明代发明的一种火箭武器“神火飞鸦”,也反映了人们向鸟类借鉴的愿望。

我国古代劳动人民对水生动物——鱼类的模仿也卓有成效。通过对水中生活的鱼类的模仿,古人伐木凿船,用木材做成鱼形的船体,仿照鱼的胸鳍和尾鳍制成双桨和单橹,由此取得水上运输的自由。后来随制作水平提高而出现的龙船,多少受到了不少动物外形的影响。古代水战中使用的火箭武器 “火龙出水”,多少有点模仿动物的意思。以上事例说明,我国古代劳动人民早期的仿生设计活动,为开发我国光辉灿烂的古代文明,创造了非凡的业绩。
外国的文明史上,大致也经历了相似的过程。在包含了丰富生产知识的古希腊神话中,有人用羽毛和蜡做成翅膀,逃出迷宫;还有泰尔发明了锯子,传说这是从鱼背骨和蛇的腭骨的形状受到启示而创造出来的。十五世纪时,德国的天文学家米勒制造了一只铁苍蝇和一只机械鹰,并进行了飞行表演。
一八ОΟ年左右,英国科学家、空气动力学的创始人之一—凯利,模仿鳟鱼和山鹬的纺锤形,找到阻力小的流线型结构。凯利还模仿鸟翅设计了一种机翼曲线,对航空技术的诞生起了很大的促进作用。同一时期,法国生理学家马雷,对鸟的飞行进行了仔细的研究,在他的著作《动物的机器》一书中,介绍了鸟类的体重与翅膀面积的关系。德国人亥姆霍兹也从研究飞行动物中,发现飞行动物的体重与身体的线度的立方成正比。亥姆霍兹的研究指出了飞行物体身体大小的局限。人们通过对鸟类飞行器官的详细研究和认真的模仿,根据鸟类飞行机构的原理,终于制造了能够载人飞行的滑翔机。
后来,设计师又根据鹤的体态设计出了掘土机的悬臂,在一战期间,人们从毒气战幸存的野猪身上中获得启示,模仿野猪的鼻子设计出了防毒面具。在海洋中浮沉灵活的潜水艇又是运用了哪些原理?虽然我们无据考察潜艇设计师在设计潜艇时是否请教了生物界,但是不难设想,设计师一定懂得鱼鳔是鱼类用来改变身体同水的比重,使之能在水中沉浮的重要器官。青蛙是水陆两栖动物,体育工作者就是认真研究了青蛙在水中的运动姿势,总结出一套既省力、又快速的游泳动作——蛙泳。另外,为潜水员制作的蹼,几乎完全按照青蛙的后肢形状做成,这就大大提高了潜水员在水中的活动能力。

二、仿生设计的历史

自古以来,自然界就是人类各种科学技术原理及重大发明的源泉。生物界有着种类繁多的动植物及物质存在,它们在漫长的进化过程中,为了求得生存与发展,逐渐具备了适应自然界变化的本领。人类生活在自然界中,与周围的生物作“邻居”,这些生物各种各样的奇异本领,吸引着人们去想象和模仿。人类运用其观察、思维和设计能力,开始了对生物的模仿,并通过创造性的劳动,制造出简单的工具,增强了自己与自然界斗争的本领和能力。
人类最初使用的工具——木棒和石斧,无疑是使用的天然木棒和天然石块;骨针的使用,无疑是鱼刺的模仿……所有这些工具的创造、生活方式的选择都不能说是人类凭空想象出来的,只能说是对自然中存在的物质及某种构成方式的直接模拟,是人类初级创造阶段,也可以说是仿生设计的起源和雏形,它们虽然是比较粗糙的、表面的,但却是我们今天得以发展的基础。
在我国,早就有着模仿生物的事例。相传在公元前三千多年,我们的祖先有巢氏模仿鸟类在树上营巢,以防御猛兽的伤害;四千多年前,我们的祖先“见飞蓬转而知为车”,即见到随风旋转的飞蓬草而发明轮子,做有装成轮子的车。古代庙宇中大殿之前的山门的建造,就其建筑结构来看,颇有点像大象的架势,柱子又圆又粗,仿佛像大象的腿。
我国古代勤劳勇敢的劳动人民对于绚丽的天空、翱翔的苍鹰早就有着各种美妙的幻想。根据秦汉时期史书记载,两千多年前,我国人民就发明了风筝,并且应用于军事联络。春秋战国时代,鲁国匠人鲁班,本名公输般,首先开始研制能飞的木鸟;并且他从一种能划破皮肤的带齿的草叶得到启示而发明了锯子。据《杜阳杂编》记载,唐朝有个韩志和,“善雕木作鸾、鹤、鸦、鹊之状,饮啄动静与真无异,以关戾置于腹内,发之则凌云奋飞,可高达三丈至一二百步外,始却下。”西汉时期,有人用鸟的羽毛做成翅膀,从高台上飞下来,企图模仿鸟的飞行。以上几例,足以说明我国古代劳动人民对鸟类的扑翼和飞行,进行了细致的观察和研究,这也是最早的仿生设计活动之一。明代发明的一种火箭武器“神火飞鸦”,也反映了人们向鸟类借鉴的愿望。

我国古代劳动人民对水生动物——鱼类的模仿也卓有成效。通过对水中生活的鱼类的模仿,古人伐木凿船,用木材做成鱼形的船体,仿照鱼的胸鳍和尾鳍制成双桨和单橹,由此取得水上运输的自由。后来随制作水平提高而出现的龙船,多少受到了不少动物外形的影响。古代水战中使用的火箭武器 “火龙出水”,多少有点模仿动物的意思。以上事例说明,我国古代劳动人民早期的仿生设计活动,为开发我国光辉灿烂的古代文明,创造了非凡的业绩。
外国的文明史上,大致也经历了相似的过程。在包含了丰富生产知识的古希腊神话中,有人用羽毛和蜡做成翅膀,逃出迷宫;还有泰尔发明了锯子,传说这是从鱼背骨和蛇的腭骨的形状受到启示而创造出来的。十五世纪时,德国的天文学家米勒制造了一只铁苍蝇和一只机械鹰,并进行了飞行表演。
一八ОΟ年左右,英国科学家、空气动力学的创始人之一—凯利,模仿鳟鱼和山鹬的纺锤形,找到阻力小的流线型结构。凯利还模仿鸟翅设计了一种机翼曲线,对航空技术的诞生起了很大的促进作用。同一时期,法国生理学家马雷,对鸟的飞行进行了仔细的研究,在他的著作《动物的机器》一书中,介绍了鸟类的体重与翅膀面积的关系。德国人亥姆霍兹也从研究飞行动物中,发现飞行动物的体重与身体的线度的立方成正比。亥姆霍兹的研究指出了飞行物体身体大小的局限。人们通过对鸟类飞行器官的详细研究和认真的模仿,根据鸟类飞行机构的原理,终于制造了能够载人飞行的滑翔机。
后来,设计师又根据鹤的体态设计出了掘土机的悬臂,在一战期间,人们从毒气战幸存的野猪身上中获得启示,模仿野猪的鼻子设计出了防毒面具。在海洋中浮沉灵活的潜水艇又是运用了哪些原理?虽然我们无据考察潜艇设计师在设计潜艇时是否请教了生物界,但是不难设想,设计师一定懂得鱼鳔是鱼类用来改变身体同水的比重,使之能在水中沉浮的重要器官。青蛙是水陆两栖动物,体育工作者就是认真研究了青蛙在水中的运动姿势,总结出一套既省力、又快速的游泳动作——蛙泳。另外,为潜水员制作的蹼,几乎完全按照青蛙的后肢形状做成,这就大大提高了潜水员在水中的活动能力。

三、仿生设计的发展

到了近代,生物学、电子学、动力学等学科的发展亦促进了仿生设计学的发展。以飞机的产生为例:
在经过无数次模仿鸟类的飞行失败后,人们通过不泄的努力,终于找到了鸟类能够飞行的原因:鸟的翅膀上弯下平,飞行时,上面的气流比下面的快,由此形成下面的压力比上面的大,于是翅膀就产生了垂直向上的升力,飞的越快,升力越大。
1852年,法国人季法儿发明了气球飞船;1870年,德国人奥托.利连塔尔制造了第一架滑翔机。利连塔尔是十九世纪末的一位具有大无畏冒险精神的人,他望着家乡波美拉尼亚的鹳用笨拙的翅膀从他房顶上飞过,他坚信人能飞行。1891年,他开始研制一种弧形肋状蝙蝠翅膀式的单翼滑翔机,自己还进行试飞;此后五年,他进行了2000多次滑翔飞行,并同鸟类进行了对比研究,提供了很有价值的资料。资料证明:气流流经机翼上部曲面所走路程,比气流流经机翼下平直表面距离较长,因而也较快,这样才能保证气流在机翼的后缘点汇合;上部气流由于走的较快,它就较为稀薄,从而产生强大吸力,约占机翼升力的三分之二大小;其余的升力来自翼下气流对机翼的压力。
19世纪末,内燃机的出现,给了人类有史以来一直梦寐以求的东西:翅膀。不用说这种翅膀是笨拙的、原始的和不可靠的,然而这却是使人类能随风伴鸟一起飞翔的翅膀。
莱特兄弟发明了真正意义上的飞机。在飞机的设计制作过程中,怎样使飞机拐弯和怎样使它稳定一直困扰着他们。为此,莱特兄弟又研究了鸟的飞行。例如,他们研究鶙鵳怎样使一只翅膀下落,靠转动这只下落的翅膀保持平衡;这只翅膀上增大的压力怎样使鶙鵳保持稳定和平衡。这两个人给他们的滑翔机装上翼梢副翼进行这些实验,由地面上的人用绳控制,使之能转动或弯翘。他们的第二个成功的实验是用操纵飞机后部一个可转动的方向舵来控制飞机的方向,通过方向舵使飞机向左或向右转弯。
后来,随着飞机的不断发展,它们逐渐失去了原来那些笨重而难看的体形,它们变的更简单,更加实用。机身和单曲面机翼都呈现出象海贝、鱼和受波浪冲洗的石头所具有的自然线条。飞机的效率增加了,比以前飞的更快,飞的更高。到了现代,科学高度发展但环境破*、生态失衡、能源枯竭,人类意识到了重新认识自然,探讨与自然更加和谐的生存方式的高度紧迫感,亦认识到仿生设计学对人类未来发展的重要性。特别是一九六Ο年秋,在美国俄亥俄州召开了第一次仿生学讨论会,成为仿生学的正式诞生之日。
此后,仿生技术取得了飞跃的发展,并获得了广泛的应用。仿生设计亦随之获得突飞猛进的发展,一大批仿生设计作品如智能机器人、雷达、声纳、人工脏器、自动控制器、自动导航器等等应运而生。
近代,科学家根据青蛙眼睛的特殊构造研制了电子蛙眼,用于监视飞机的起落和跟踪人造卫星;根据空气动力学原理仿照鸭子头形状而设计的高速列车;模仿某些鱼类所喜欢的声音来诱捕鱼的电子诱鱼器;通过对萤火虫和海蝇地发光原理的研究,获得了化学能转化为光能的新方法,从而研制出化学荧光灯等等。

目前,仿生设计学在对生物体几何尺寸及其外形的模仿同时,还通过研究生物系统的结构、功能、能量转换、信息传递等各种优异特征,并把它运用到技术系统中,改善已有的工程设备,并创造出新的工艺、自动化装置、特种技术元件等技术系统;同时仿生设计学为创造新的科学技术装备、建筑结构和新工艺提供原理、设计思想或规划蓝图,亦为现代设计的发展提供了新的方向,并充当了人类社会与自然界沟通信息的“纽带”。
对人脑的探索,可以展望未来的电子计算机有可能具有生物原理的功能。同它相比,现在的电子计算机只能作为算盘。
对植物光合作用的研究,将为延长人类的寿命、治疗疾病提供一个崭新的医学发展途径。
对生物体结构和形态的研究,有可能使未来的建筑、产品改变模样。使人们从“城市”这个人造物理环境中重新回归“自然”。
信天翁是一种海鸟,它具有淡化海水的器官——“去盐器”。对其“去盐器”的结构及其工作原理的研究,可以启发人们去改善旧的或创造出新的海水淡化装置。
白蚁能把吃下去的木质转化为脂肪和蛋白质,对其机理的研究,将会对人工合成这些物质有所启发。
同时仿生设计亦可对人类的生命和健康造成巨大的影响。例如人们可以通过仿生技术,设计制造制造出人造器官,如血管、肾、骨膜、关节、食道、气管、尿道、心脏、肝脏、血液、子宫、肺、胰、眼、耳以及人工细胞。专家预测,在本世纪中后期,除脑以外人的所有器官都可以用人工器官代替。例如,模拟血液的功能,可以制造、传递养料及废物,并能与氧气及二氧化碳自动结合并分离的液态碳氢化合物人工血;模拟肾功能,用多孔纤维增透膜制成血液过滤器,也就是人工肾;模拟肝脏,根据活性碳或离子交换树脂吸附过滤有毒物质,制成人工肝解毒器;模拟心脏功能,用血液和单向导通驱动装置,组成人工心脏自动循环器。
随着对宇宙的开发、认识,又将使人类不但认识宇宙中新形式的生命,而且将为人类提供崭新的设计,创造出地球上前所未有的新的装置……

仿生设计学的特点与研究内容

仿生设计学是仿生学与设计学互相交叉渗透而结合成的一门的边缘学科,其研究范围非常广泛,研究内容丰富多彩,特别是由于仿生学和设计学涉及到自然科学和社会科学的许多学科,因此也就很难对仿生设计学的研究内容进行划分。这里,我们是基于对所模拟生物系统在设计中的不同应用而分门别类的。归纳起来,仿生设计学的研究内容主要有:
1、形态仿生设计学研究的是生物体(包括动物、植物、微生物、人类)和自然界物质存在(如日、月、风、云、山、川、雷、电等)的外部形态及其象征寓意,以及如何通过相应的艺术处理手法将之应用与设计之中。
2、功能仿生设计学主要研究生物体和自然界物质存在的功能原理,并用这些原理去改进现有的或建造新的技术系统,以促进产品的更新换代或新产品的开发。
3、视觉仿生设计学研究生物体的视觉器官对图象的识别、对视觉信号的分析与处理,以及相应的视觉流程;他广泛应用与产品设计、视觉传达设计和环境设计之中。
4、结构仿生设计学主要研究生物体和自然界物质存在的内部结构原理在设计中的应用问题,适用与产品设计和建筑设计。研究最多的是植物的茎、叶以及动物形体、肌肉、骨骼的结构。
从国内外仿生设计学的发展情况来看,形态仿生设计学和功能仿生设计学是目前研究的重点。在本文中,还将着重介绍形态仿生学和功能仿生设计学的一些情况。

作为一门新兴的边缘交叉学科,仿生设计学具有某些设计学和仿生学的特点,但他又有别与这两门学科。具体说来,仿生设计学具有如下特点:
1、 艺术科学性
仿生设计学是现代设计学的一个分支、一个补充。同其它设计学科一样,仿生设计学亦具有它们的共同特性——艺术性。鉴于仿生设计学是以一定的设计原理为基础、以一定的仿生学理论和研究成果为依据,因此具有很严谨的科学性。
2、 商业性
仿生设计学为设计服务,为消费者服务,同时优秀的仿生设计作品亦可刺激消费、引导消费、创造消费。
3、 无限可逆性
以仿生设计学为理论依据的仿生设计作品都可以在自然界中找到设计的原型,该作品在设计、投产、销售过程中所遇到的各种问题又可以促进仿生设计学的研究与发展。仿生学的研究对象是无限的,仿生设计学的研究对象亦是无限的;同理,仿生设计的原型也是无限的,只要潜心研究大自然,我们永远不会有江郎才尽的一天。
4、 学科知识的综合性
要熟悉和运用仿生设计学,必须具备一定的数学、生物学、电子学、物理学、控制论、信息论、人机学、心理学、材料学、机械学、动力学、工程学、经济学、色彩学、美学、传播学、伦理学等相关学科的基本知识。
5、 学科的交叉性
要深入研究和了解仿生设计学,必须在设计学的基础上,既要了解生物学、社会科学的基础知识,又要对当前仿生学的研究成果有清晰的认识。它是产生于几个学科交叉点上的一种新型交叉学科。

五、仿生设计学的研究方法

仿生设计学的研究方法主要为“模型分析法”:
1、创造生物模型和技术模型
首先从自然中选取研究对象,然后依此对象建立各种实体模型或虚拟模型,用各种技术手段(包括材料、工艺、计算机等)对它们进行研究,做出定量的数学依据;通过对生物体和模型定性的、定量的分析,把生物体的形态、结构转化为可以利用在技术领域的抽象功能,并考虑用不同的物质材料和工艺手段创造新的形态和结构。
① 从功能出发、研究生物体结构形态——制造生物模型。
找到研究对象的生物原理,通过对生物的感知,形成对生物体的感性认识。从功能出发,研究生物的结构形态,在感性认识的基础上,除去无关因素,并加以简化,提出一个生物模型。对照生物原型进行定性的分析,用模型模拟生物结构原理。目的是研究生物体本身的结构原理。
② 从结构形态出发,达到抽象功能——制造技术模型
根据对生物体的分析,做出定量的数学依据,用各种技术手段(包括材料、工艺等)制造出可以在产品上进行实验的技术模型。牢牢掌握量的尺度,从具象的形态和结构中,抽象出功能原理。目的是研究和发展技术模型本身。
2、可行性分析与研究
建立好模型后,开始对它们进行各种可行性的分析与研究:
① 功能性分析
找到研究对象的生物原理,通过对生物的感知,形成对生物体的感性认识。从功能出发,对照生物原型进行定性的分析。
② 外部形态分析
对生物体的外部形态分析,可以是抽象的,也可以是具象的。在此过程中重点考虑的是人机工学、寓意、材料与加工工艺等方面的问题。
③ 色彩分析
进行色彩的分析同时,亦要对生物的生活环境进行分析,要研究为什么是这种色彩?在这一环境下这种色彩有什么功能?
④ 内部结构分析
研究生物的结构形态,在感性认识的基础上,除去无关因素,并加以简化,通过分析,找出其在设计中值得借鉴合利用的地方。
⑤ 运动规律分析
利用现有的高科技手段,对生物体的运动规律进行研究,找出其运动的原理,针对性的解决设计工程中的问题。
当然,我们还可以就生物体的其它方面进行各种可行性分析。

仿生是高科技的代名词,它是指运用尖端的科学技术,来模仿生物的各种官能感觉和思维判功能,更加有效地为人数服务。各国都在不遗余力地加大在仿生学方面的研究。可以说,仿生学研究程度的高低,是国家综合国力的重要标志之一。荣事达集团研制开发的“仿生搓洗”全自动洗衣机最近推向市场,将仿生技 术运用于洗衣机领域,产生了革命性的影响。

据了解,这种洗衣机首先具有神经智能网络功能,可以模仿人的恩维判断能力,根据衣物的重量、质地、脏污程度来自行决定洗涤程序、洗涤时间和水位的高低,从而达到最佳的洗涤状态。其次,具有搓衣板的功能。洗衣机内的搓洗棒能够像手一样随心所欲地来回搓动,这种搓动被控制在300度以内,能够保证把衣服洗干净又防止衣服缠绕。三是它去除了传统洗衣机因机械传动装置所包含的机械连杆、曲柄、齿轮等部件转动所带来的噪音,采用直流永磁无刷电机直接驱动,有效地防止噪音的产生。

直流永磁无刷电机可节电50%

采用直流永磁无刷电机,在电子驱动器的控制下可实现无级调速,并可精确地控制搓洗棒每次转动的次数和角度。因此,不同的衣物质地、脏污程度可以设定不同的洗涤程序,有效地模仿了人工搓洗的快慢节奏和力度,实现“仿生”搓洗。另外,采用直流永磁电机比采用交流电机节电50%。

电子刹车技术把噪音降到最低

有洗衣机的消费者会有因噪音大而烦恼的体会,他们在换购洗衣机时总希望拥有一台没有噪音的洗衣机。“仿生搓洗”洗衣机则恰好能满足这一点。

这主要是因为“仿生搓洗”洗衣机采用电子擎实现电子刹车,刹车时由电机本身迅速降速,从而避免了像其他洗衣机采用机械摩擦刹车时产生的噪音和振动,实现了静音运转。

搓洗棒确保洗涤过程中不产生碎屑

有洗衣机使用经验的消费者知道,洗衣机的洗涤桶上部都有一个过滤网,用来过滤衣物在洗涤时产生的碎屑。但是“仿生搓洗”洗衣机却没有这种过滤网,为什么呢?业内专家解释,这是因为“仿生搓洗”洗衣机的内部构造根本有别于波轮式和滚筒式洗衣机。“仿生搓洗”洗衣机采用的驱动擎是竖立的搓洗棒,能够使动能从中央向四周传递。当洗衣机启动时,搓洗棒带动衣物沿着桶壁运动的角度不超过300度,有效避免了衣物因连续旋转而形成的缠绕,以及与桶壁摩擦产生的碎屑,洗得干净、不缠绕、无摩擦,当然不需要过滤网。衣物沿桶壁来回运动与衣物在搓衣板上的来回运动极其相似,并能达到手洗效果,“仿生搓洗”洗衣机也由此得名。

飞机在夜间行驶不撞东西

人们都知道,飞机在夜间行驶是不会撞上东西的,是因为通过蝙蝠的启示,蝙蝠嘴里发出一种超声波,人是听不见的,但它能听见,假如有障碍物,声音就会反射回来,蝙蝠就立即改变飞行的方向,飞机也是它他通过天线发出一种无线电波,有障碍物也会反射回来,显示在荧光屏上,

摘 要 阐明制造过程与生命现象之间的相似之处:基于自组织机制的有序化、基于信息模型的个体复制,以及通过进化过程形成的高度适应性。论述仿生制造的基本内涵,指出现代制造科学应该从生命现象及生命科学中学习与借鉴的主要内容,它们包括完善的信息技术、由基因控制的生长型的加工成形方法、性能超群的有机材料、奇妙的生物智能、高效的寻优与趋优方法,以及先进的组织结构和运行模式。提出关于加强学科间的联合,促进仿生制造技术研究的建议。

-- 结构构件
对于构件,在截面面积相同的情况下,把材料尽可能放到远离中和轴的位置上,是有效的截面形状。有趣的是,在自然界许多动植物的组织中也体现了这个结论。例如:“疾风知劲草”,许多能承受狂风的植物的茎部是维管状结构,其截面是空心的。支持人承重和运动的骨骼,其截面上密实的骨质分布在四周,而柔软的骨髓充满内腔。在建筑结构中常被采用的空心楼板、箱形大梁、工形截面钣梁以及折板结构、空间薄壁结构等都是根据这条结论得来的。
-- 斑马
斑马生活在非洲大陆,外形与一般的马没有什么两样,它们身上的条纹是为适应生存环境而衍化出来的保护色。在所有斑马中,细斑马长得最大最美。它的肩高140-160厘米,耳朵又圆又大,条纹细密且多。斑马常与草原上的牛羚、旋角大羚羊、瞪羚及鸵鸟等共外,以抵御天敌。人类将斑马条纹应用到到军事上是一个是很成功仿生学例子。
仿生学一词是1960年由美国斯蒂尔根据拉丁文“bios”(生命方式的意思)和字尾“nlc”(“具有……的性质”的意思)构成的。他认为“仿生学是研究以模仿生物系统的方式、或是以具有生物系统特征的方式、或是以类似于生物系统方式工作的系统的科学”。尽管人类在文明进化中不断从生物界受到新的启示,但仿生学的诞生,一般以1960年全美第一届仿生学讨论会的召开为标志。

仿生学的研究范围主要包括:力学仿生、分子仿生、能量仿生、信息与控制仿生等。

力学仿生,是研究并模仿生物体大体结构与精细结构的静力学性质,以及生物体各组成部分在体内相对运动和生物体在环境中运动的动力学性质。例如,建筑上模仿贝壳修造的大跨度薄壳建筑,模仿股骨结构建造的立柱,既消除应力特别集中的区域,又可用最少的建材承受最大的载荷。军事上模仿海豚皮肤的沟槽结构,把人工海豚皮包敷在船舰外壳上,可减少航行揣流,提高航速;

分子仿生,是研究与模拟生物体中酶的催化作用、生物膜的选择性、通透性、生物大分子或其类似物的分析和合成等。例如,在搞清森林害虫舞毒蛾性引诱激素的化学结构后,合成了一种类似有机化合物,在田间捕虫笼中用千万分之一微克,便可诱杀雄虫;

能量仿生,是研究与模仿生物电器官生物发光、肌肉直接把化学能转换成机械能等生物体中的能量转换过程;

信息与控制仿生,是研究与模拟感觉器官、神经元与神经网络、以及高级中枢的智能活动等方面生物体中的信息处理过程。例如根据象鼻虫视动反应制成的“自相关测速仪”可测定飞机着陆速度。根据鲎复眼视网膜侧抑制网络的工作原理,研制成功可增强图像轮廓、提高反差、从而有助于模糊目标检测的—些装置。已建立的神经元模型达100种以上,并在此基础上构造出新型计算机。

模仿人类学习过程,制造出一种称为“感知机”的机器,它可以通过训练,改变元件之间联系的权重来进行学习,从而能实现模式识别。此外,它还研究与模拟体内稳态,运动控制、动物的定向与导航等生物系统中的控制机制,以及人-机系统的仿生学方面。

某些文献中,把分子仿生与能量仿生的部分内容称为化学仿生,而把信息和控制仿生的部分内容称为神经仿生。

仿生学的范围很广,信息与控制仿生是一个主要领域。一方面由于自动化向智能控制发展的需要,另一方面是由于生物科学已发展到这样一个阶段,使研究大脑已成为对神经科学最大的挑战。人工智能和智能机器人研究的仿生学方面——生物模式识别的研究,大脑学习记忆和思维过程的研究与模拟,生物体中控制的可靠性和协调问题等——是仿生学研究的主攻方面。

控制与信息仿生和生物控制论关系密切。两者都研究生物系统中的控制和信息过程,都运用生物系统的模型。但前者的目的主要是构造实用人造硬件系统;而生物控制论则从控制论的一般原理,从技术科学的理论出发,为生物行为寻求解释。

最广泛地运用类比、模拟和模型方法是仿生学研究方法的突出特点。其目的不在于直接复制每一个细节,而是要理解生物系统的工作原理,以实现特定功能为中心目的。—般认为,在仿生学研究中存在下列三个相关的方面:生物原型、数学模型和硬件模型。前者是基础,后者是目的,而数学模型则是两者之间必不可少的桥梁。

由于生物系统的复杂性,搞清某种生物系统的机制需要相当长的研究周期,而且解决实际问题需要多学科长时间的密切协作,这是限制仿生学发展速度的主要原因。

其他生物学分支学科

生物学概述、植物学、孢粉学、动物学、微生物学、细胞生物学、分子生物学、生物分类学、习性学、生理学、细菌学、微生物生理学、微生物遗传学、土壤微生物学、细胞学、细胞化学、细胞遗传学、免疫学、胚胎学、优生学、悉生生物学、遗传学、分子遗传学、生态学、仿生学、生物物理学、生物力学、生物力能学、生物声学、生物化学、生物数学

附:部分“仿生学”实例
苍蝇与宇宙飞船

令人讨厌的苍蝇,与宏伟的航天事业似乎风马牛不相及,但仿生学却把它们紧密地联系起来了。

苍蝇是声名狼藉的“逐臭之夫”,凡是腥臭污秽的地方,都有它们的踪迹。苍蝇的嗅觉特别灵敏,远在几千米外的气味也能嗅到。但是苍蝇并没有“鼻子”,它靠什么来充当嗅觉的呢? 原来,苍蝇的“鼻子”——嗅觉感受器分布在头部的一对触角上。

每个“鼻子”只有一个“鼻孔”与外界相通,内含上百个嗅觉神经细胞。若有气味进入“鼻孔”,这些神经立即把气味刺激转变成神经电脉冲,送往大脑。大脑根据不同气味物质所产生的神经电脉冲的不同,就可区别出不同气味的物质。因此,苍蝇的触角像是一台灵敏的气体分析仪。

仿生学家由此得到启发,根据苍蝇嗅觉器的结构和功能,仿制成功一种十分奇特的小型气体分析仪。这种仪器的“探头”不是金属,而是活的苍蝇。就是把非常纤细的微电极插到苍蝇的嗅觉神经上,将引导出来的神经电信号经电子线路放大后,送给分析器;分析器一经发现气味物质的信号,便能发出警报。这种仪器已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。

这种小型气体分析仪,也可测量潜水艇和矿井里的有害气体。利用这种原理,还可用来改进计算机的输入装置和有关气体色层分析仪的结构原理中。

从萤火虫到人工冷光

自从人类发明了电灯,生活变得方便、丰富多了。但电灯只能将电能的很少一部分转变成可见光,其余大部分都以热能的形式浪费掉了,而且电灯的热射线有害于人眼。那么,有没有只发光不发热的光源呢? 人类又把目光投向了大自然。

在自然界中,有许多生物都能发光,如细菌、真菌、蠕虫、软体动物、甲壳动物、昆虫和鱼类等,而且这些动物发出的光都不产生热,所以又被称为“冷光”。

在众多的发光动物中,萤火虫是其中的一类。萤火虫约有1 500种,它们发出的冷光的颜色有黄绿色、橙色,光的亮度也各不相同。萤火虫发出冷光不仅具有很高的发光效率,而且发出的冷光一般都很柔和,很适合人类的眼睛,光的强度也比较高。因此,生物光是一种人类理想的光。

科学家研究发现,萤火虫的发光器位于腹部。这个发光器由发光层、透明层和反射层三部分组成。发光层拥有几千个发光细胞,它们都含有荧光素和荧光酶两种物质。在荧光酶的作用下,荧光素在细胞内水分的参与下,与氧化合便发出荧光。萤火虫的发光,实质上是把化学能转变成光能的过程。

早在40年代,人们根据对萤火虫的研究,创造了日光灯,使人类的照明光源发生了很大变化。近年来,科学家先是从萤火虫的发光器中分离出了纯荧光素,后来又分离出了荧光酶,接着,又用化学方法人工合成了荧光素。由荧光素、荧光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充满爆炸性瓦斯的矿井中当闪光灯。由于这种光没有电源,不会产生磁场,因而可以在生物光源的照明下,做清除磁性水雷等工作。

现在,人们已能用掺和某些化学物质的方法得到类似生物光的冷光,作为安全照明用。

电鱼与伏特电池

自然界中有许多生物都能产生电,仅仅是鱼类就有500余种 。人们将这些能放电的鱼,统称为“电鱼”。

各种电鱼放电的本领各不相同。放电能力最强的是电鳐、电鲶和电鳗。中等大小的电鳐能产生70伏左右的电压,而非洲电鳐能产生的电压高达220伏;非洲电鲶能产生350伏的电压;电鳗能产生500伏的电压,有一种南美洲电鳗竟能产生高达880伏的电压,称得上电击冠军,据说它能击毙像马那样的大动物。

电鱼放电的奥秘究竟在哪里?经过对电鱼的解剖研究, 终于发现在电鱼体内有一种奇特的发电器官。这些发电器是由许多叫电板或电盘的半透明的盘形细胞构成的。由于电鱼的种类不同,所以发电器的形状、位置、电板数都不一样。电鳗的发电器呈棱形,位于尾部脊椎两侧的肌肉中;电鳐的发电器形似扁平的肾脏,排列在身体中线两侧,共有200万块电板;电鲶的发电器起源于某种腺体,位于皮肤与肌肉之间,约有500万块电板。单个电板产生的电压很微弱,但由于电板很多,产生的电压就很大了。

电鱼这种非凡的本领,引起了人们极大的兴趣。19世纪初,意大利物理学家伏特,以电鱼发电器官为模型,设计出世界上最早的伏打电池。因为这种电池是根据电鱼的天然发电器设计的,所以把它叫做“人造电器官”。对电鱼的研究,还给人们这样的启示:如果能成功地模仿电鱼的发电器官,那么,船舶和潜水艇等的动力问题便能得到很好的解决。

水母的顺风耳

“燕子低飞行将雨,蝉鸣雨中天放晴。”生物的行为与天气的变化有一定关系。沿海渔民都知道,生活在沿岸的鱼和水母成批地游向大海,就预示着风暴即将来临。

水母,又叫海蜇,是一种古老的腔肠动物,早在5亿年前,它就漂浮在海洋里了。这种低等动物有预测风暴的本能,每当风暴来临前,它就游向大海避难去了。

原来,在蓝色的海洋上,由空气和波浪摩擦而产生的次声波 (频率为每秒8—13次),总是风暴来临的前奏曲。这种次声波人耳无法听到,小小的水母却很敏感。仿生学家发现,水母的耳朵的共振腔里长着一个细柄,柄上有个小球,球内有块小小的听石,当风暴前的次声波冲击水母耳中的听石时,听石就剌激球壁上的神经感受器,于是水母就听到了正在来临的风暴的隆隆声。

仿生学家仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,相当精确地模拟了水母感受次声波的器官。把这种仪器安装在舰船的前甲板上,当接受到风暴的次声波时,可令旋转360°的喇叭自行停止旋转,它所指的方向,就是风暴前进的方向;指示器上的读数即可告知风暴的强度。这种预测仪能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义
中文名称:仿生学 英文名称:bionics 定义:涵盖生物电子学、生物传感器、生物仿真材料、生物物理学、生物电机和生物大分子的自装配等的一门交叉学科。主要是研究和建立一类人工系统,使之具有生命系统的某些特性。 应用学科:生物化学与分子生物学(一级学科);方法与技术(二级学科) 编辑本段仿生学基本情况
  仿生学是一门模仿生物的特殊本领,利用生物的结构和功能原理来研制机械或各种新技术的科学技术。 仿生学(模仿鸟类)
  仿生学一词是1960年由美国斯蒂尔根据拉丁文“bios(生命方式的意思)”和字尾“nlc(‘具有……的性质’的意思)”构成的。   仿生学(bionices)在具有生命之意的希腊语言bion上,加上有工程技术涵义的ices而组成的词语。大约从1960年才开始使用。生物具有的功能迄今比任何人工制造的机械都优越得多,仿生学就是要在工程上实现并有效地应用生物功能的一门学科。例如关于信息接受(感觉功能)、信息传递(神经功能)、自动控制系统等,这种生物体的结构与功能在机械设计方面给了很大启发。可举出的仿生学例子,如将海豚的体形或皮肤结构(游泳时能使身体表面不产生紊流)应用到潜艇设计原理上。仿生学也被认为是与控制论有密切关系的一门学科,而控制论主要是将生命现象和机械原理加以比较,进行研究和解释的一门学科。   苍蝇,是细菌的传播者,谁都讨厌它。可是苍蝇的楫翅是“天然导航仪”,人们模仿它制成了“振动陀螺仪”。这种仪器目前已经应用在火箭和高速飞机上,实现了自动驾驶。苍蝇的眼睛是一种“复眼”,由3000多只小眼组成,人们模仿它制成了“蝇眼透镜”。“蝇眼透镜”是一种新型光学元件,它的用途很多。“蝇眼透镜”是用几百或者几千块小透镜整齐排列组合而成的,用它作镜头可以制成“蝇眼照相机”,一次就能照出千百张相同的相片。这种照相机已经用于印刷制版和大量复制电子计算机的微小电路,大大提高了工效和质量。   自然对方身份的是非得失生物,都有着怎样的奇异本领?它们的种种本领,给了人类什么启发?模仿这些本领,人类又可以造出什么样的机器?这里要介绍的一门新的科学——仿生学。
编辑本段人类仿生学起源
  自古以来,自然界就是人类各种技术思想、工程原理及重大发明的源泉。种类繁多的生物界经过长期的进化过程,使它们能适应环境的变化,从而得到生存和发展。劳动创造了人类。人类以自己直立的身躯、能劳动的双手、交流情感和思想的语言,在长期的生产实践中,促进了神经系统尤其是大脑获得了高度发展。因此,人类无与伦比的能力和智慧远远超过生物界的所有类群。人类通过劳动运用聪明的才智和灵巧的双手制造工具,从而在自然界里获得更大自由。人类的智慧不仅仅停留在观察和认识生物界上,而且还运用人类所独有的思维和设计能力模仿生物,通过创造性的劳动增加自己的本领。鱼儿在水中有自由来去的本领,人们就模仿鱼类的形体造船,以木桨仿鳍。相传早在大禹时期,我国古代劳动人民观察鱼在水中用尾巴的摇摆而游动、转弯,他们就在船尾上架置木桨。通过反复的观察、模仿和实践,逐渐改成橹和舵,增加了船的动力,掌握了使船转弯的手段。这样,即使在波涛滚滚的江河中,人们也能让船只航行自如。
鸟儿展翅可在空中自由飞翔。据《韩非子》记载鲁班用竹木作鸟“成而飞之,三日不下”。然而人们更希望仿制鸟儿的双翅使自己也飞翔在空中。早在四百多年前,意大利人利奥那多·达·芬奇和他的助手对鸟类进行仔细的解剖,研究鸟的身体结构并认真观察鸟类的飞行。设计和制造了一架扑翼机,这是世界上第一架人造飞行器。   以上这些模仿生物构造和功能的发明与尝试,可以认为是人类仿生学的先驱,也是仿生学的萌芽。
编辑本段发人深省的对比
人类仿生的行为
  人类仿生的行为虽然早有雏型,但是在20世纪40年代以前,人们并没有自觉地把生物作为设计思想和创造发明的源泉。科学家对于生物学的研究也只停留在描述生物体精巧的结构和完美的功能上。而工程技术人员更多的依赖于他们卓越的智慧,辛辛苦苦的努力,进行着人工发明。他们很少有意识的向生物界学习。但是,以下几个事实可以说明:人们在技术上遇到的某些难题,生物界早在千百万年前就曾出现,而且在进化过程中就已解决了,然而人类却没有从生物界得到应有的启示。   在第一次世界大战时期,出于军事上的需要,为使舰艇在水下隐蔽航行而制造出潜水艇。当工程技术人员在设计原始的潜艇时,是先用石块或铅块装在潜艇上使它下沉,如果需要升至水面,就将携带的石块或铅块扔掉,使艇身回到水面来。以后经过改进,在潜艇上采用浮箱交替充水和排水的方法来改变潜艇的重量。以后又改成压载水舱,在水舱的上部设放气阀,下面设注水阀,当水舱灌满海水时,艇身重量增加使它潜入水中。需要紧急下潜时,还有速潜水舱,待艇身潜入水中后,再把速潜水舱内的海水排出。如果一部分压载水舱充水,另一部分空着,潜水艇可处于半潜状态。潜艇要起浮时,将压缩空气通入水舱排出海水,艇内海水重量减轻后潜艇就可以上浮。如此优越的机械装置实现了潜艇的自由沉浮。但是后来发现鱼类的沉浮系统比人们的发明要简单得多,鱼的沉浮系统仅仅是充气的鱼鳔。鳔内不受肌肉的控制,而是依靠分泌氧气进入鳔内或是重新吸收鳔内一部分氧气来调节鱼鳔中气体含量,促使鱼体自由沉浮。然而鱼类如此巧妙的沉浮系统,对于潜艇设计师的启发和帮助已经为时过迟了。   声音是人们生活中不可缺少的要素。通过语言,人们交流思想和感情,优美的音乐使人们获得艺术的享受,工程技术人员还把声学系统应用在工业生产和军事技术中,成为颇为重要的信息之一。自从潜水艇问世以来,随之而来的就是水面的舰船如何发现潜艇的位置以防偷袭;而潜艇沉入水中后,也须准确测定敌船方位和距离以利攻击。因此,在第一次世界大战期间,在海洋上,水面与水中敌对双方的斗争采用了各种手段。海军工程师们也利用声学系统作为一个重要的侦察手段。首先采用的是水听器,也称噪声测向仪,通过听测敌舰航行中所发出的噪声来发现敌舰。只要周围水域中有敌舰在航行,机器与螺旋桨推进器便发出噪声,通过水听器就能听到,能及时发现敌人。但那时的水听器很不完善,一般只能收到本身舰只的噪声,要侦听敌舰,必须减慢舰只航行速度甚至完全停车才能分辨潜艇的噪音,这样很不利于战斗行动。不久,法国科学家郎之万(1872~1946)研究成功利用超声波反射的性质来探测水下舰艇。用一个超声波发生器,向水中发出超声波后,如果遇到目标便反射回来,由接收器收到。根据接收回波的时间间隔和方位,便可测出目标的方位和距离,这就是所谓的声纳系统。人造声纳系统的发明及在侦察敌方潜水艇方面获得的突出成果,曾使人们为之惊叹不已。岂不知远在地球上出现人类之前,蝙蝠、海豚早已对“回声定位”声纳系统应用自如了。 蝙蝠能用耳朵与嘴“看东西”
  生物在漫长的年代里就是生活在被声音包围的自然界中,它们利用声音寻食,逃避敌害和求偶繁殖。因此,声音是生物赖以生存的一种重要信息。意大利科学家斯帕拉捷很早以前就发现蝙蝠能在完全黑暗中任意飞行,既能躲避障碍物也能捕食在飞行中的昆虫,但是塞住蝙蝠的双耳、封住它的嘴后,它们在黑暗中就寸步难行了。面对这些事实,斯帕拉捷提出了一个使人们难以接受的结论:蝙蝠能用耳朵与嘴“看东西”。它们能够用嘴发出超声波后,在超声波接触到障碍物反射回来时,用双耳接收到。第一次世界大战结束后,1920年,哈台认为蝙蝠发出声音信号的频率超出人耳的听觉范围。并提出蝙蝠对目标的定位方法与第一次世界大战时郎之万发明的用超声波回波定位的方法相同。遗憾的是,哈台的提示并未引起人们的重视,而工程师们对于蝙蝠具有“回声定位”的技术是难以相信的。直到1983年采用了电子测量器,才完完全全证实蝙蝠就是以发出超声波来定位的。但是这对于早期雷达和声纳的发明已经不能有所帮助了。 蜻蜓的翅膀对造飞机的启示
  另一个事例是人们对于昆虫行为为时过晚的研究。在利奥那多·达·芬奇研究鸟类飞行造出第一个飞行器400年之后,人们经过长期反复的实践,终于在1903年发明了飞机,使人类实现了飞上天空的梦想。由于不断改进,30年后人们的飞机不论在速度、高度和飞行距离上都超过了鸟类,显示了人类的智慧和才能。但是在继续研制飞行更快更高的飞机时,设计师又碰到了一个难题,就是气体动力学中的颤振现象。当飞机飞行时,机翼发生有害的振动,飞行越快,机翼的颤振越强烈,甚至使机翼折断,造成飞机坠落,许多试飞的飞行员因而丧生。飞机设计师们为此花费了巨大的精力研究消除有害的颤振现象,经过长时间的努力才找到解决这一难题的方法。就在机翼前缘的远端上安放一个加重装置,这样就把有害的振动消除了。可是,昆虫早在三亿年以前就飞翔在空中了,它们也毫不例外地受到颤振的危害,经过长期的进化,昆虫早已成功地获得防止颤振的方法。生物学家在研究蜻蜓翅膀时,发现在每个翅膀前缘的上方都有一块深色的角质加厚区——翼眼或称翅痣。如果把翼眼去掉,飞行就变得荡来荡去。实验证明正是翼眼的角质组织使蜻蜓飞行的翅膀消除了颤振的危害,这与设计师高超的发明何等相似。假如设计师们先向昆虫学习翼眼的功用,获得有益于解决颤振的设计思想,就可似避免长期的探索和人员的牺牲了。面对蜻蜓翅膀的翼眼,飞机设计师大有相见恨晚之感!   以上这四个事例发人深省,也使人们受到了很大启发。早在地球上出现人类之前,各种生物已在大自然中生活了亿万年,在它们为生存而斗争的长期进化中,获得了与大自然相适应的能力。生物学的研究可以说明,生物在进化过程中形成的极其精确和完善的机制,使它们具备了适应内外环境变化的能力。生物界具有许多卓有成效的本领。如体内的生物合成、能量转换、信息的接受和传递、对外界的识别、导航、定向计算和综合等,显示出许多机器所不可比拟的优越之处。生物的小巧、灵敏、快速、高效、可靠和抗干扰性实在令人惊叹不已。   仿生学的意义   仿生学是连接生物与技术的桥梁 开水壶的启示让瓦特发明火车
  自从瓦特(James Watt,1736~1819)在1782年发明蒸汽机以后,人们在生产斗争中获得了强大的动力。在工业技术方面基本上解决了能量的转换、控制和利用等问题,从而引起了第一次工业革命,各式各样的机器如雨后春笋般的出现,工业技术的发展极大地扩大和增强了人的体能,使人们从繁重的体力劳动解脱出来。随着技术的发展,人们在蒸汽机以后又经历了电气时代并向自动化时代迈进。   20世纪40年代电子计算机的问世,更是给人类科学技术的宝库增添了可贵的财富,它以可靠和高效的本领处理着人们手头上数以万计的各种信息,使人们从汪洋大海般的数字、信息中解放出来,使用计算机和自动装置可以使人们在繁杂的生产工序面前变得轻松省力,它们准确地调整、控制着生产程序,使产品规格精确。但是,自动控制装置是按人们制定的固定程序进行工作的,这就使它的控制能力具有很大的局限性。自动装置对外界缺乏分析和进行灵活反应的能力,如果发生任何意外的情况,自动装置就要停止工作,甚至发生意外事故,这就是自动装置本身所具有的严重缺点。要克服这种缺点,无非是使机器各部件之间,机器与环境之间能够“通讯”,也就是使自动控制装置具有适应内外环境变化的能力。要解决这一难题,在工程技术中就要解决如何接受、转换。利用和控制信息的问题。因此,信息的利用和控制就成为工业技术发展的一个主要矛盾。如何解决这个矛盾呢?生物界给人类提供了有益的启示。   人类要从生物系统中获得启示,首先需要研究生物和技术装置是否存在着共同的特性。1940年出现的调节理论,将生物与机器在一般意义上进行对比。到1944年,一些科学家已经明确了机器和生物体内的通讯、自动控制与统计力学等一系列的问题上都是一致的。在这样的认识基础上,1947年,一个新的学科——控制论产生了。   控制论(Cybernetics)是从希腊文而来,原意是“掌舵人”。按照控制论的创始人之一维纳(Norbef Wiener,1894~1964)给予控制论的定义是“关于在动物和机器中控制和通讯”的科学。虽然这个定义过于简单,仅仅是维纳关于控制论经典著作的副题,但它直截了当地把人们对生物和机器的认识联系在了一起。   控制论的基本观点认为,动物(尤其是人)与机器(包括各种通讯、控制、计算的自动化装置)之间有一定的共体,也就是在它们具备的控制系统内有某些共同的规律。根据控制论研究表明,各种控制系统的控制过程都包含有信息的传递、变换与加工过程。控制系统工作的正常,取决于信息运 行过程的正常。所谓控制系统是指由被控制的对象及各种控制元件、部件、线路有机地结合成有一定控制功能的整体。从信息的观点来看,控制系统就是一部信息通道的网络或体系。机器与生物体内的控制系统有许多共同之处,于是人 机器手臂
们对生物自动系统产生了极大的兴趣,并且采用物理学的、数学的甚至是技术的模型对生物系统开展进一步的研究。因此,控制理论成为联系生物学与工程技术的理论基础。成为沟通生物系统与技术系统的桥梁。   生物体和机器之间确实有很明显的相似之处,这些相似之处可以表现在对生物体研究的不同水平上。由简单的单细胞到复杂的器官系统(如神经系统)都存在着各种调节和自动控制的生理过程。我们可以把生物体看成是一种具有特殊能力的机器,和其它机器的不同就在于生物体还有适应外界环境和自我繁殖的能力。也可以把生物体比作一个自动化的工厂,它的各项功能都遵循着力学的定律;它的各种结构协调地进行工作;它们能对一定的信号和刺激作出定量的反应,而且能像自动控制一样,借助于专门的反馈联系组织以自我控制的方式进行自我调节。例如我们身体内恒定的体温、正常的血压、正常的血糖浓度等都是肌体内复杂的自控制系统进行调节的结果。控制论的产生和发展,为生物系统与技术系统的连接架起了桥梁,使许多工程人员自觉地向生物系统去寻求新的设计思想和原理。于是出现了这样一个趋势,工程师为了和生物学家在共同合作的工程技术领域中获得成果,就主动学习生物科学知识。
编辑本段仿生学的诞生
  随着生产的需要和科学技术的发展,从20世纪50年代以来,人们已经认识到生物系统是开辟新技术的主要途径之一,自觉地把生物界作为各种技术思想、设计原理和创造发明的源泉。人们用化学、物理学、数学以及技术模型对生物系统开展着深入的研究,促进了生物学的极大发展,对生物体内功能机理的研究也取得了迅速的进展。此时模拟生物不再是引人入胜的幻想,而成了可以做到的事实。生物学家和工程师们积极合作,开始将从生物界获得的知识用来改善旧的或创造新的工程技术设备。生物学开始跨入各行各业技术革新和技术革命的行列,而且首先在自动控制、航空、航海等军事部门取得了成功。于是生物学和工程技术学科结合在一起,互相渗透孕育出一门新生的科学——仿生学。 仿生学是独立的一门学科
  作为一门独立的学科,仿生学正式诞生于1960年9月。由美国空军航空局在俄亥俄州的空军基地戴通召开了第一次仿生学会议。会议讨论的中心议题是“分析生物系统所得到的概念能够用到人工制造的信息加工系统的设计上去吗?”斯蒂尔为新兴的科学命名为“Bionics”,希腊文的意思代表着研究生命系统功能的科学,1963年我国将“Bionics”译为“仿生学”。斯蒂尔把仿生学定义为“模仿生物原理来建造技术系统,或者使人造技术系统具有或类似于生物特征的科学”。简言之,仿生学就是模仿生物的科学。确切地说,仿生学是研究生物系统的结构、特质、功能、能量转换、信息控制等各种优异的特征,并把它们应用到技术系统,改善已有的技术工程设备,并创造出新的工艺过程、建筑构型、自动化装置等技术系统的综合性科学。从生物学的角度来说,仿生学属于“应用生物学”的一个分支;从工程技术方面来看,仿生学根据对生物系统的研究,为设计和建造新的技术设备提供了新原理、新方法和新途径。仿生学的光荣使命就是为人类提供最可靠、最灵活、最高效、最经济的接近于生物系统的技术系统,为人类造福。
编辑本段研究方法与内容
  仿生学是生物学、数学和工程技术学互相渗透而结合成的一门新兴的边缘科学。第一届仿生学会议为仿生学确定了一个有趣而形象的标志:一个巨大的积分符号,把解剖刀和电烙铁“积分”在一起。这个符号的含义不仅显示出仿生学的组成,而且也概括表达了仿生学的研究途径。   仿生学的任务就是要研究生物系统的优异能力及产生的原理,并把它模式化,然后应用这些原理去设计和制造新的技术设备。 仿生学中的生物模型
  仿生学的主要研究方法就是提出模型,进行模拟。其研究程序大致有以下三个阶段:   首先是对生物原型的研究。根据生产实际提出的具体课题,将研究所得的生物资料予以简化,吸收对技术要求有益的内容,取消与生产技术要求无关的因素,得到一个生物模型;第二阶段是将生物模型提供的资料进行数学分析,并使其内在的联系抽象化,用数学的语言把生物模型“翻译”成具有一定意义的数学模型;最后数学模型制造出可在工程技术上进行实验的实物模型。当然在生物的模拟过程中,不仅仅是简单的仿生,更重要的是在仿生中有创新。经过实践——认识——再实践的多次重复,才能使模拟出来的东西越来越符合生产的需要。这样模拟的结果,使最终建成的机器设备将与生物原型不同,在某些方面甚上超过生物原型的能力。例如今天的飞机在许多方面都超过了鸟类的飞行能力,电子计算机在复杂的计算中要比人的计算能力迅速而可靠。   仿生学的基本研究方法使它在生物学的研究中表现出一个突出的特点,就是整体性。从仿生学的整体来看,它把生物看成是一个能与内外环境进行联系和控制的复杂系统。它的任务就是研究复杂系统内各部分之间的相互关系以及整个系统的行为和状态。生物最基本的特征就是生物的自我更新和自我复制,它们与外界的联系是密不可分的。生物从环境中获得物质和能量,才能进行生长和繁殖;生物从环境中接受信息,不断地调整和综合,才能适应和进化。长期的进化过程使生物获得结构和功能的统一,局部与整体的协调与统一。仿生学要研究生物体与外界刺激(输入信息)之间的定量关系,即着重于数量关系的统一性,才能进行模拟。为达到此目的,采用任何局部的方法都不能获得满意的效果。因此,仿生学的研究方法必须着重于整体。   仿生学的研究内容是极其丰富多彩的,因为生物界本身就包含着成千上万的种类,它们具有各种优异的结构和功能供各行业来研究。自从仿生学问世以来的二十几年内,仿生学的研究得到迅速的发展,且取得了很大的成果。就其研究范围可包括电子仿生、机械仿生、建筑仿生、化学仿生等。随着现代工程技术的发展,学科分支繁多,在仿生学中相应地开展对口的技术仿生研究。例如:航海部门对水生动物运动的流体力学的研究;航空部门对鸟类、昆虫飞行的模拟、动物的定位与导航;工程建筑对生物力学的模拟;无线电技术部门对于人神经细胞、感觉器宫和神经网络的模拟;计算机技术对于脑的模拟以及人工智能的研究等。在第一届仿生学会议上发表的比较典型的课题有:“人造神经元有什么特点”、“设计生物计算机中的问题”、“用机器识别图像”、“学习的机器”等。从中可以看出以电子仿生的研究比较广泛。仿生学的研究课题多集中在以下三种生物原型的研究,即动物的感觉器官、神经元、神经系统的整体作用。以后在机械仿生和化学仿生方面的研究也随之开展起来,近些年又出现新的分支,如人体的仿生学、分子仿生学和宇宙仿生学等。   总之,仿生学的研究内容,从模拟微观世界的分子仿生学到宏观的宇宙仿生学包括了更为广泛的内容。而当今的科学技术正是处于一个各种自然科学高度综合和互相交叉、渗透的新时代,仿生学通过模拟的方法把对生命的研究和实践结合起来,同时对生物学的发展也起了极大的促进作用。在其它学科的渗透和影响下,使生物科学的研究在方法上发生了根本的转变;在内容上也从描述和分析的水平向着精确和定量的方向深化。生物科学的发展又是以仿生学为渠道向各种自然科学和技术科学输送宝贵的资料和丰富的营养,加速科学的发展。因此,仿生学的科研显示出无穷的生命力,它的发展和成就将为促进世界整体科学技术的发展做出巨大的贡献。
编辑本段仿生学研究范围
  仿生学的研究范围主要包括:力学仿生、分子仿生、能量仿生、信息与控制仿生等。 力学仿生
  ◇力学仿生,是研究并模仿生物体大体结构与精细结构的静力学性质,以及生物体各组成部分在体内相对运动和生物体在环境中运动的动力学性质。例如,建筑上模仿贝壳修造的大跨度薄壳建筑,模仿股骨结构建造的立柱,既消除应力特别集中的区域,又可用最少的建材承受最大的载荷。军事上模仿海豚皮肤的沟槽结构,把人工海豚皮包敷在船舰外壳上,可减少航行揣流,提高航速;   ◇分子仿生,是研究与模拟生物体中酶的催化作用、生物膜的选择性、通透性、生物大分子或其类似物的分析和合成等。例如,在搞清森林害虫舞毒蛾性引诱激素的化学结构后,合成了一种类似有机化合物,在田间捕虫笼中用千万分之一微克,便可诱杀雄虫;   ◇能量仿生,是研究与模仿生物电器官生物发光、肌肉直接把化学能转换成机械能等生物体中的能量转换过程; 模拟感觉器官
◇信息与控制仿生,是研究与模拟感觉器官、神经元与神经网络、以及高级中枢的智能活动等方面生物体中的信息处理过程。例如,根据象鼻虫视动反应制成的“自相关测速仪”可测定飞机着陆速度。根据鲎复眼视网膜侧抑制网络的工作原理,研制成功可增强图像轮廓、提高反差、从而有助于模糊目标检测的—些装置。已建立的神经元模型达100种以上,并在此基础上构造出新型计算机。   模仿人类学习过程,制造出一种称为“感知机”的机器,它可以通过训练,改变元件之间联系的权重来进行学习,从而能实现模式识别。此外,它还研究与模拟体内稳态,运动控制、动物的定向与导航等生物系统中的控制机制,以及人-机系统的仿生学方面。   某些文献中,把分子仿生与能量仿生的部分内容称为化学仿生,而把信息和控制仿生的部分内容称为神经仿生。   仿生学的范围很广,信息与控制仿生是一个主要领域。一方面由于自动化向智能控制发展的需要,另一方面是由于生物科学已发展到这样一个阶段,使研究大脑已成为对神经科学最大的挑战。人工智能和智能机器人研究的仿生学方面——生物模式识别的研究,大脑学习记忆和思维过程的研究与模拟,生物体中控制的可靠性和协调问题等——是仿生学研究的主攻方面。   控制与信息仿生和生物控制论关系密切。两者都研究生物系统中的控制和信息过程,都运用生物系统的模型。但前者的目的主要是构造实用人造硬件系统;而生物控制论则从控制论的一般原理,从技术科学的理论出发,为生物行为寻求解释。 ?   最广泛地运用类比、模拟和模型方法是仿生学研究方法的突出特点。其目的不在于直接复制每一个细节,而是要理解生物系统的工作原理,以实现特定功能为中心目的。—般认为,在仿生学研究中存在下列三个相关的方面:生物原型、数学模型和硬件模型。前者是基础,后者是目的,而数学模型则是两者之间必不可少的桥梁。   由于生物系统的复杂性,搞清某种生物系统的机制需要相当长的研究周期,而且解决实际问题需要多学科长时间的密切协作,这是限制仿生学发展速度的主要原因。
仿生学的例子
仿生学一词是1960年由美国斯蒂尔根据拉丁文“bios”(生命方式的意思)和字尾“nlc”(“具有……的性质”的意思)构成的。他认为“仿生学是研究以模仿生物系统的方式、或是以具有生物系统特征的方式、或是以类似于生物系统方式工作的系统的科学”。尽管人类在文明进化中不断从生物界受到新的启示,但仿生学的诞生,一般以1960年全美第一届仿生学讨论会的召开为标志。

仿生学的研究范围主要包括:力学仿生、分子仿生、能量仿生、信息与控制仿生等。

力学仿生,是研究并模仿生物体大体结构与精细结构的静力学性质,以及生物体各组成部分在体内相对运动和生物体在环境中运动的动力学性质。例如,建筑上模仿贝壳修造的大跨度薄壳建筑,模仿股骨结构建造的立柱,既消除应力特别集中的区域,又可用最少的建材承受最大的载荷。军事上模仿海豚皮肤的沟槽结构,把人工海豚皮包敷在船舰外壳上,可减少航行揣流,提高航速;

分子仿生,是研究与模拟生物体中酶的催化作用、生物膜的选择性、通透性、生物大分子或其类似物的分析和合成等。例如,在搞清森林害虫舞毒蛾性引诱激素的化学结构后,合成了一种类似有机化合物,在田间捕虫笼中用千万分之一微克,便可诱杀雄虫;

能量仿生,是研究与模仿生物电器官生物发光、肌肉直接把化学能转换成机械能等生物体中的能量转换过程;

信息与控制仿生,是研究与模拟感觉器官、神经元与神经网络、以及高级中枢的智能活动等方面生物体中的信息处理过程。例如根据象鼻虫视动反应制成的“自相关测速仪”可测定飞机着陆速度。根据鲎复眼视网膜侧抑制网络的工作原理,研制成功可增强图像轮廓、提高反差、从而有助于模糊目标检测的—些装置。已建立的神经元模型达100种以上,并在此基础上构造出新型计算机。

模仿人类学习过程,制造出一种称为“感知机”的机器,它可以通过训练,改变元件之间联系的权重来进行学习,从而能实现模式识别。此外,它还研究与模拟体内稳态,运动控制、动物的定向与导航等生物系统中的控制机制,以及人-机系统的仿生学方面。

某些文献中,把分子仿生与能量仿生的部分内容称为化学仿生,而把信息和控制仿生的部分内容称为神经仿生。

仿生学的范围很广,信息与控制仿生是一个主要领域。一方面由于自动化向智能控制发展的需要,另一方面是由于生物科学已发展到这样一个阶段,使研究大脑已成为对神经科学最大的挑战。人工智能和智能机器人研究的仿生学方面——生物模式识别的研究,大脑学习记忆和思维过程的研究与模拟,生物体中控制的可靠性和协调问题等——是仿生学研究的主攻方面。

控制与信息仿生和生物控制论关系密切。两者都研究生物系统中的控制和信息过程,都运用生物系统的模型。但前者的目的主要是构造实用人造硬件系统;而生物控制论则从控制论的一般原理,从技术科学的理论出发,为生物行为寻求解释。

最广泛地运用类比、模拟和模型方法是仿生学研究方法的突出特点。其目的不在于直接复制每一个细节,而是要理解生物系统的工作原理,以实现特定功能为中心目的。—般认为,在仿生学研究中存在下列三个相关的方面:生物原型、数学模型和硬件模型。前者是基础,后者是目的,而数学模型则是两者之间必不可少的桥梁。

由于生物系统的复杂性,搞清某种生物系统的机制需要相当长的研究周期,而且解决实际问题需要多学科长时间的密切协作,这是限制仿生学发展速度的主要原因。

其他生物学分支学科

生物学概述、植物学、孢粉学、动物学、微生物学、细胞生物学、分子生物学、生物分类学、习性学、生理学、细菌学、微生物生理学、微生物遗传学、土壤微生物学、细胞学、细胞化学、细胞遗传学、免疫学、胚胎学、优生学、悉生生物学、遗传学、分子遗传学、生态学、仿生学、生物物理学、生物力学、生物力能学、生物声学、生物化学、生物数学

附:部分“仿生学”实例
苍蝇与宇宙飞船

令人讨厌的苍蝇,与宏伟的航天事业似乎风马牛不相及,但仿生学却把它们紧密地联系起来了。

苍蝇是声名狼藉的“逐臭之夫”,凡是腥臭污秽的地方,都有它们的踪迹。苍蝇的嗅觉特别灵敏,远在几千米外的气味也能嗅到。但是苍蝇并没有“鼻子”,它靠什么来充当嗅觉的呢? 原来,苍蝇的“鼻子”——嗅觉感受器分布在头部的一对触角上。

每个“鼻子”只有一个“鼻孔”与外界相通,内含上百个嗅觉神经细胞。若有气味进入“鼻孔”,这些神经立即把气味刺激转变成神经电脉冲,送往大脑。大脑根据不同气味物质所产生的神经电脉冲的不同,就可区别出不同气味的物质。因此,苍蝇的触角像是一台灵敏的气体分析仪。

仿生学家由此得到启发,根据苍蝇嗅觉器的结构和功能,仿制成功一种十分奇特的小型气体分析仪。这种仪器的“探头”不是金属,而是活的苍蝇。就是把非常纤细的微电极插到苍蝇的嗅觉神经上,将引导出来的神经电信号经电子线路放大后,送给分析器;分析器一经发现气味物质的信号,便能发出警报。这种仪器已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。

这种小型气体分析仪,也可测量潜水艇和矿井里的有害气体。利用这种原理,还可用来改进计算机的输入装置和有关气体色层分析仪的结构原理中。

从萤火虫到人工冷光

自从人类发明了电灯,生活变得方便、丰富多了。但电灯只能将电能的很少一部分转变成可见光,其余大部分都以热能的形式浪费掉了,而且电灯的热射线有害于人眼。那么,有没有只发光不发热的光源呢? 人类又把目光投向了大自然。

在自然界中,有许多生物都能发光,如细菌、真菌、蠕虫、软体动物、甲壳动物、昆虫和鱼类等,而且这些动物发出的光都不产生热,所以又被称为“冷光”。

在众多的发光动物中,萤火虫是其中的一类。萤火虫约有1 500种,它们发出的冷光的颜色有黄绿色、橙色,光的亮度也各不相同。萤火虫发出冷光不仅具有很高的发光效率,而且发出的冷光一般都很柔和,很适合人类的眼睛,光的强度也比较高。因此,生物光是一种人类理想的光。

科学家研究发现,萤火虫的发光器位于腹部。这个发光器由发光层、透明层和反射层三部分组成。发光层拥有几千个发光细胞,它们都含有荧光素和荧光酶两种物质。在荧光酶的作用下,荧光素在细胞内水分的参与下,与氧化合便发出荧光。萤火虫的发光,实质上是把化学能转变成光能的过程。

早在40年代,人们根据对萤火虫的研究,创造了日光灯,使人类的照明光源发生了很大变化。近年来,科学家先是从萤火虫的发光器中分离出了纯荧光素,后来又分离出了荧光酶,接着,又用化学方法人工合成了荧光素。由荧光素、荧光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充满爆炸性瓦斯的矿井中当闪光灯。由于这种光没有电源,不会产生磁场,因而可以在生物光源的照明下,做清除磁性水雷等工作。

现在,人们已能用掺和某些化学物质的方法得到类似生物光的冷光,作为安全照明用。

电鱼与伏特电池

自然界中有许多生物都能产生电,仅仅是鱼类就有500余种 。人们将这些能放电的鱼,统称为“电鱼”。

各种电鱼放电的本领各不相同。放电能力最强的是电鳐、电鲶和电鳗。中等大小的电鳐能产生70伏左右的电压,而非洲电鳐能产生的电压高达220伏;非洲电鲶能产生350伏的电压;电鳗能产生500伏的电压,有一种南美洲电鳗竟能产生高达880伏的电压,称得上电击冠军,据说它能击毙像马那样的大动物。

电鱼放电的奥秘究竟在哪里?经过对电鱼的解剖研究, 终于发现在电鱼体内有一种奇特的发电器官。这些发电器是由许多叫电板或电盘的半透明的盘形细胞构成的。由于电鱼的种类不同,所以发电器的形状、位置、电板数都不一样。电鳗的发电器呈棱形,位于尾部脊椎两侧的肌肉中;电鳐的发电器形似扁平的肾脏,排列在身体中线两侧,共有200万块电板;电鲶的发电器起源于某种腺体,位于皮肤与肌肉之间,约有500万块电板。单个电板产生的电压很微弱,但由于电板很多,产生的电压就很大了。

电鱼这种非凡的本领,引起了人们极大的兴趣。19世纪初,意大利物理学家伏特,以电鱼发电器官为模型,设计出世界上最早的伏打电池。因为这种电池是根据电鱼的天然发电器设计的,所以把它叫做“人造电器官”。对电鱼的研究,还给人们这样的启示:如果能成功地模仿电鱼的发电器官,那么,船舶和潜水艇等的动力问题便能得到很好的解决。

水母的顺风耳

“燕子低飞行将雨,蝉鸣雨中天放晴。”生物的行为与天气的变化有一定关系。沿海渔民都知道,生活在沿岸的鱼和水母成批地游向大海,就预示着风暴即将来临。

水母,又叫海蜇,是一种古老的腔肠动物,早在5亿年前,它就漂浮在海洋里了。这种低等动物有预测风暴的本能,每当风暴来临前,它就游向大海避难去了。

原来,在蓝色的海洋上,由空气和波浪摩擦而产生的次声波 (频率为每秒8—13次),总是风暴来临的前奏曲。这种次声波人耳无法听到,小小的水母却很敏感。仿生学家发现,水母的耳朵的共振腔里长着一个细柄,柄上有个小球,球内有块小小的听石,当风暴前的次声波冲击水母耳中的听石时,听石就剌激球壁上的神经感受器,于是水母就听到了正在来临的风暴的隆隆声。

仿生学家仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,相当精确地模拟了水母感受次声波的器官。把这种仪器安装在舰船的前甲板上,当接受到风暴的次声波时,可令旋转360°的喇叭自行停止旋转,它所指的方向,就是风暴前进的方向;指示器上的读数即可告知风暴的强度。这种预测仪能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义

人耳朵能够听见的最高的音(音调);以及人能够听见的最大的声音(分贝)

网上能下载听到最高的音吗?
我们人类的听觉范围是有限的。声波是由赫兹来度量的。人讲话的频率范围为500~3000赫兹。多数年轻人的听力范围为20~20000赫兹。网上没有。
这有个网站,英文的
http://www.noiseaddicts.com/2009/03/can-you-hear-this-hearing-test/
点20kHz,或21kHz.
音量调大点。不然听不到
分贝是一种测量声音的相对响度的单位,大约等于人耳通常可觉察响度差别的最小值;人耳对响度差别能察觉的范围,大约包括以最微弱的可闻声为1而开始的标度上的130分贝对频率的定义。
 0 -20 分贝 很静、几乎感觉不到;
  20 -40 分贝安静、犹如轻声絮语;
  40 -60 分贝一般、普通室内谈话;
  60 -70 分贝吵闹、有损神经;
  70 -90 分贝很吵、神经细胞受到破坏。
  90 -100 分贝 吵闹加剧、听力受损;
  100 -120 分贝难以忍受、呆一分钟即暂时致聋。
  120分贝以上:极度聋或全聋
  300分贝左右或以上:方圆20km的人不可修复性耳聋
抄于百度
为了你的耳朵健康,不要试听最高音。

为什么人类可以通过单一的耳膜震动听到多种不同的音色?

因为声音的振动的频率是不一样的。音色是由物体的振动规律决定的:振动的波形,通常不是单一的正弦波,而是一系列波组成的复合波。正是这种复合波决定了振动体发出的音色。

1.为什么能听到声音

人能听见各种声音,是通过一套复杂的听觉器官——耳实现的。耳分为外耳、中耳和内耳三个部分。外耳包括耳廓、外耳道和鼓膜,耳廓也就是我们平常所说的耳朵,它有收集声波的作用。

当声波经耳廓收集到耳内后,先震动了鼓膜,然后鼓膜的振动又由中耳的3块听小骨传到内耳。这时候我们就能听见声音啦。

2.听觉系统为什么能给出不同音色的反馈

基音和泛音混在一起其实也就是一个波。很通俗的讲,比如你敲一块三角铁,发出“叮……”的声音。其中,“叮”是基音,“……”是泛音。

比如说你用乐器发出一个固定的音高,这个声波可以被分解成为许多不同频率正弦波的叠加,正弦波你可以理解为简单的纯音,比如你拿起电话话筒时里面的声音就是那种。

这些声波里面,最为显著的就是基音,它的频率确定了音高,振幅基本上确定了响度。其他的都是泛音,泛音一般频率会是基音的整倍数,这些泛音的振幅根据乐器不同也都不尽相同,所以你可以分辨出不同的音色。比如你可以找一些乐队调音时的录音,他们吹的都是相同的音,但是你可以用播放器的频谱显示看出来他们的区别。


3.结论

声音不仅仅是单薄的各种声学频谱的分量,还有交织重叠一起的混响,人听声音不只是两片鼓膜,还有耳蜗中的液体,以及不经意动头而引起的多次采样,这些都对你听见声音,把它们转化为音乐的感受的过程有重要影响!

根据耳膜以及听小骨不同的振幅,频率,以及音源的响度,会产生无数种不同的神经电信号传输到大脑,大脑就会识别出不同的音色了。
因为世界上的声音有着不同的振动频率,耳膜可以根据频率来分辨不同的声音。
因为耳膜是有伸缩性的,所以能够接收到很多不同的声音。

人耳能听见的声音范围是多少分贝?

20分贝以下的声音,一般来说,我们认为它是安静的,当然,一般来说15分贝以下的我们就可以认为它属于"死寂"的了。20-40分贝大约是情侣耳边的喃喃细语。40-60分贝属于我们正常的交谈声音。60分贝以上就属于吵闹范围了,70分贝我们就可以认为它是很吵的,而且开始损害听力神经,90分贝以上就会使听力受损,而呆在100-120分贝的空间内,如无意外,一分钟人类就得暂时性失聪(致聋)。资料来源于http://www.mn83.com/shownews.asp?lm=0&ID=523.请参考
所谓的听力范围并不是指响度,而是指音调,也就是物体振动的频率,用赫兹(hz)表示,20hz-20000hz是人的听觉范围.
而分贝是一种对声音强度的划分,而0分贝并非指没有声音,而是通常人能听见的最微弱的声音,而声音的分贝高的话也能听见,不过会对人体有害.
听力损失以纯音测听500、1000、2000赫兹hz的气导平均听力计算.正常人的听力范围在0~25分贝(db)之间.
根据世界卫生组织耳聋分级标准:
26~40分贝;轻度聋
41~55分贝:中度聋
56~70分贝:中重度聋
71~90分贝:重度聋
分贝是一个对数表示法的单位。按理说0分贝取指数就是单位1拉,不是真正的0,同样ph这个酸碱度单位也是对数单位他的0也不是真正意义的0。当然过小的声音不会用分贝来做单位的,不然都是0分贝了。0分贝当然不是没有声音,声音太小人是听不见的,但很多动物连你腿毛动一下都能听见,就另当别论了。。
但人能听见的声音最小是0分贝,20赫兹是人的听力频域下线,20赫兹就等于0分贝。但这个临界点,到底是听见还是听不见就很难说了,也许有人能听见,有些人不能,耳朵不好使的什么也听不见
20分贝为最低的,50-60分贝为我们正常交谈的声音,60以上我们会觉得吵闹,70以上就损害听力了
30分贝
文章标题: 人类能否制造一个全世界每个地区能同时直接用耳朵听见的声音
文章地址: http://www.xdqxjxc.cn/jingdianwenzhang/174248.html
文章标签:听见  耳朵  全世界  人类  声音
Top