时间: 2023-05-14 00:00:11 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 103次
小学数学四大思想数形结合、等价变换、数学归纳法、反证法,八大方法是逆向思维方法、假设思维方法、消元思维方法、转化思维方法、对应思维方法、联想思维方法、发散思维方法、量不变思维方法。
小学数学的重要性
数学具有指导生活的作用数学从表面上看是一门严肃严谨的学科,但其实数学影响着我们日常生活的方方面面。我们从一出生到耋耄之年,一直就没有离开过数学,或者说我们根本无法离开数学。
数学一直在潜移默化地在细微之处影响着我们的生活,并且我们在小学时代逐渐形成的数学思维会一直影响我们今后的学习生活,让我们生活得更加精致幸福。
小学数学思想方法有数形结合、对应思想方法等方法。
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
利用数量间的对应关系来思考数学问题,就是对应思想,寻找数量之间的对应关系,也是解答应用题的一种重要的思维方式。在低、中年级整数应用题训练时,教师就应该让学生明白数量之间存在着一一对应的关系。
数学学习注意事项
思考是小学生学习数学方法的核心,在学这门课中,思考有重大意义。解数学题时,首先要观察、分析、思考。思考往往能发现题目的特点,找出解题的突破口、简便的解题方法。
动手有助于消化学习过的知识,做到融会贯穿。课下,常常把老师讲过的公式进行推导,推导时不要看书,要默记。这样就能使自己对公式掌握滚瓜烂熟,可为公式变形计算打下扎实的根底。
所谓创造,就是想出新方法,做出新成绩,建立新理论。创造,就要不局限于老师、课本讲的方法。平时,有一些难度高的题目,我在听懂了老师讲的方法后,还要自己去找一找有没有另外的解法,这样能加深对题目的理解,能比拟几种解法的利弊,使解题思维到达一个更高的境界。
学数学需要什么思维
学数学需要什么思维,学习不是像一只没头苍蝇一样,许多同学到了高三数学成绩还是很渣,如果没有扎实的基础,在之后的学习中就会手足无措了,以下分享学数学需要什么思维
学数学需要什么思维11、转化思维
转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的方向来将我呢提转化为另一种形式,然后找到更好的解决方法,这种思维是在我们遇到难题碰到钉子的时候往往能取得很好的效果。
2、 逻辑思维
逻辑思维是学习数学必须具备的一项重要能力,是最重要的一种思维能力,因为数学是一门有很强逻辑性的学科,借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程
一般来说我们解决问题最先用到的就是我们的逻辑思维,先判断题目考察什么知识点,然后通过我们学习到的知识点对问题进行分析,然后推理出正确的答题过程。
3、 逆向思维
逆向思维用一句话来说就是得知结果反推过程,我们可以从问题相反面深入地进行探索,有时候我们反而能在这种逆向思维中找寻真正的破题方法。
学数学需要什么思维2怎样学好数学的技巧
1、重视计算
数学的计算学习就像语文的识字学习,是最基本的。
不识字,语文读不好;计算差,数学同样学不好。而且计算好,会给孩子数学学习提供很大的帮助。
家长可以每天让孩子做2分钟口算。一开始,2分钟内能只能做完20道口算,但之后,你会发现孩子会越来越快,正确率越来越高。
2、重视生活中的数学
其实数学的学习对生活的影响很大,它能提供很多的帮助。
例如:
买东西、计算利率、盈利等等,这些都用到数学。你可以在生活中,有意识的跟孩子提数学问题,让他解答。很简单,你带孩子去买菜,一斤苹果5元,买3斤多少钱,给阿姨20元,找回多少钱。
别小看这些,在小学数学学习中,解决问题占的分数是最多的,而解决问题无非就是判断用加减乘除中的哪种来列式解答,这些问题其实就是生活中的问题,孩子在生活中接触多,自然就会解答。
3、主动预习
新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。
如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。
抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
有些家长头疼孩子上课效率很差;这其中很关键的原因是没有做好预习;自然也就做不到有的放矢
4、思考是数学学习方法的核心
一些孩子对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题。
如有这样一道题让学生解“把一个长方体的高去掉2厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”
孩子对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师家长的引导下逐渐掌握解题时的思考方法。这道题从单位上讲,涉及到长度单位、面积单位;从图形上讲,涉及到长方形、正方形、长方体、正方体;
从图形变化关系讲:长方形→正方形;从思维推理上讲:长方体→减少一部分底面是正方形的长方体→减少部分四个面面积相等→求一个面的`面积→求出长方形的长(即正方形的一个棱长)→正方体的体积;
经启发,孩子分析后,学生根据其思路(可画出图形)进行解答。
有的学生很快解答出来:
设原长方体的底面长为X,则2X×4=48
得:X=6(即正方体的棱长),
这样得出正方体的体积为:6×6×6=216(立方厘米)。
所以说,在学习过程中,老师家长最大的作用是:启发。
孩子在老师家长的引导下,去主动思考解题的思路,掌握学习方法!
5、培养阅读兴趣
假期和一位资深老师聊到孩子数学学习问题,分享一段重点:
“您孩子数学学习是什么情况?”老师问。
“题不难成绩还不错。一遇难题,就好像深入不进去。”提起女儿的数学,我真头疼。
“那她平时喜欢读书吗?”
“不是特别喜欢,但也不是一点不读。平时喜欢看漫画之类。”我想了想说。
“哦,那科普读物和一些经典名著读过吗?”老师接着问。
“没有,我认为对学习有用的书她都读不懂,也不愿意读。”我有些不好意思地回答。
“是有些问题。”老师顿了顿说,“孩子将来中学要想学好数理化,必须小学得多读书,特别是有深度有人文素养的好书。多读好书的孩子思维活跃,视野也开阔,到了高年级就更能显示出优势。”
“我们带过的数学成绩好的同学大多6、7岁就能看书,在小学阶段就大量阅读有深度有人文素养的好书,爱思考,爱看书,这群孩子问问题的深度和广度有时把我都难倒了。
听她这么一说,我这才更加理解“学生读书越多,他的思维就越清晰,他的智慧力量就越活跃。”
阅读对数学的重要性
很多家长总觉得阅读所带来的改变很缓慢,而考试就在眼前,所以还是觉得不如补课来得直接,效果更显著。
其实:阅读的功效绝不仅仅是丰富文化积淀,提高语文素养,而是帮助孩子点燃思维的火花,拓展视野,深化思维,提高学习力。
所以,阅读不仅仅是语文的事情,它对于任何一门学科来说都是首要的.。有研究发现,一年级或更早开始大量阅读的孩子比三年级开始阅读的孩子在其后的中小学学习,尤其是数理化学习方面潜力更大。
因为前者在其后的学习生涯中具备了深阅读能力和习惯,也就是理解能力很强,而后者阅读时思维很肤浅,理解能力自然很弱。这个现象在初二这个分水岭年级就表现得很明显了。
所以,不要等到中小学遇到困难才没完没了地补课“拉一把”,而是要让孩子4-7岁解决识字问题,6-9岁就能爱看书,9岁后就会大量阅读、读好书。
学数学需要什么思维3学好数学的好方法
一、预习方法
初一学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出问题和疑点。学生预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,掌握本节知识的概貌。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,以便带着疑问去听课。方法上可采用随课预习或单元预习。
二、听课方法
在听课方法的指导方面要处理好“听”、“思”、“记”的关系。
“听”是直接用感官接受知识,学生在听的过程中注意:(1)听每节课的学习要求;(2)听知识引人及知识形成过程;(3)听懂重点、难点剖析(尤其是预习中的疑点);(4)听例题解法的思路和数学思想方法的体现;(5)听好课后小结。
“思”是指学生思维。没有思维,就发挥不了学生的主体作用。(1)多思、勤思,随听随思;(2)深思,即追根溯源地思考,善于大胆提出问题;(3)善思,由听和观察去联想、猜想、归纳;(4)树立批判意识,学会反思。可以说“听”是“思”的基储关键,“思”是“听”的深化,是学习方法的核心和本质的内容,会思维才会学习。
“记”是指学生课堂笔记。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。要求学生:(1)记笔记服从听讲,要掌握记录时机;(2)记要点、记疑问、记解题思路和方法;(3)记小结、记课后思考题。使学生明确“记”是为“听”和“思”服务的。
适合学生的数学学习方法
理解之一——定义
数学跟其他学科一样,也是有很多概念性的东西,学好数学的基础就是明白定义到底说的是什么。比如数学中的平方,立方,绝对值的含义。我们知道平方就是两个相同的数相乘,当然立方就是三个相同的数相乘,绝对值就是大于或者等于0的数值,明白了定义的真正含义,也就走出了第一步,为后面的学习打下了坚实的基础。
理解之三——勤于练习
前面我说过。数学不是背出来的,是用笔杆子算出来的。所以针对一个公式或者一个定义,只有把关于这个问题的题目多做上几道,自然的就运用和真正理解了其中的意义。因此对于数学,一定不要偷懒,只看不算,只有多动脑,多动手,这样才会更加灵活的学好数学。
理解之二——实践
数学跟其他学科不同之处就是不需要死记硬背,因为数学不考试问答题,而是计算这是最大的不同。怎么实践呢,具体的说一下。
数学的许多题都是从定义出发的,前面我说过,定义明白了,也就好下手了。比如合并同类项,先想定义,就是同类的项,简单点就是都有的那个东西,明白了定义,然后下手做题,当然就事半功倍了。
全站搜索