在狭义相对论里,光速是个定值,换句话说光子在无引力的时空中没有加速度,那在广义相对论中呢?
如果光子有加速度,是不是光速在广义相对论中就不是定值了?不好意思,我没钱了,回头还。光速永远是定值。最好不要用加速度来理解这个问题。加速度是经典运动学中的概念,在高速下经典运动学有很多定律不成立的。
提钱就俗了,都是大家互相交流与学习而已。
我同意楼上所说,如果要考虑加速度,那质量引起的扭曲难道你还要用引力提供向心力这种理论来解释么?是不是?
如果你真要研究加速度,那么在向心加速度的影响下,速度的大小是不变的。
光速是一个定值,目前已知的物质是不可能超过光速的,包括光。所以光是不可能再加速的。对于狭义相对论中,在惯性系里光子是不会有加速度的,而在广义相对论了,引力是空间扭曲的一种表现。换句话说对于光来说,在光速的情况下时间是已经停止了,那在这种情况下光还能加速吗?不要说加速,减速都是不肯能的,因为时间对于我们光的时间已经停止了。
加速度是牛顿力学的概念,相对论中并不涉及加速度的问题。而且,光是否具有质量?F=ma这个式子显然要有质量才能定义。狭义相对论中阐述了光速不变这一基本理念,它之所是狭义的,是因为它与牛顿力学不协调,因为按照狭义相对论来说,如果太阳突然消失,地球要大概8分钟才变黑暗,因为光是有速度的,它的传播需要时间,而按照牛顿引力论来说,地球会立刻察觉太阳的消失,而飞离轨道,这样这种引力效应就以无限大的速度传递了,不符合狭义相对论里说的,光速不可超越。后来的广义相对论解决了这个问题,提出了一种新的引力论,而且这种引力论显然比牛顿的要好很多,在水星轨道的计算上就体现出来了。这样,相对论的体系就完整了,光速不变的根基也就奠定了,而并不像你说的那样,光速在广义相对论中就不是定值了,这不可笑么。。。爱因斯坦干嘛自己抽自己嘴巴啊
狭义相对论是什么
1.一个适用范围:仅适用于惯性系(即不具有加速度的参考系,而广义相对论适用于所有的参考系)
2.两个原理:
①光速不变原理(由迈克尔逊-莫雷实验得到):光速在不同惯性系的观察者看来是一个定值
②相对性原理(假设):所有惯性系都是平权的,所有运动都是相对的,不存在绝对静止、绝对时间、绝对速度等绝对的概念
3.由原理得出的两个推论:
①钟慢效应:因为时间是相对的,每个惯性系都有自己的时钟,并且每个时钟都是平权的。因此,相对运动的两个惯性系K1、K2,K1中的观察者以K1作为参照,会发现K2的时间变慢;同理,K2中的观察者以K2作为参照,也会发现K1的时间变慢。
②尺缩效应:因为空间是相对的,并且光速不变,所以相对运动的两个惯性系K1、K2,K1中的观察者以K1作为参照,会发现K2的空间尺度缩短;同理,K2中的观察者以K2作为参照,也会发现K1的空间尺度缩短。
象征相对论效应的图狭义相对论是由爱因斯坦在洛仑兹和庞加莱等人的工作基础上创立的时空理论,是对牛顿时空观的拓展和修正。 爱因斯坦以光速不变原理出发,建立了新的时空观。进一步,闵科夫斯基为了狭义相对论提供了严格的数学基础, 从而将该理论纳入到带有闵科夫斯基度量的四维空间之几何结构中。
简单说就是事物是相对的,不存在绝对的事物
一个公理化理论体系
什么是相对论
请讲的明白一些相对论
相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。
狭义相对论,是只限于讨论惯性系情况的相对论。牛顿时空观认为空间是平直的、各向同性的和各点同性的的三维空间——绝对空间,时间是独立于空间的单独一维(因而也是绝对的),即绝对时空观。狭义相对论认为空间和时间并不相互独立,而是一个统一的四维时空整体,并不存在绝对的空间和时间。在狭义相对论中,整个时空仍然是平直的、各向同性的和各点同性的,这是一种对应于“全局惯性系”的理想状况。狭义相对论将真空中光速为常数作为基本假设,结合狭义相对性原理和上述时空的性质可以推出洛仑兹变换。
广义相对论是爱因斯坦在1915年发表的理论。爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上(目前实验证实,在10 − 12的精确度范围内,仍没有看到引力质量与惯性质量的差别)。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身故有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走。
倒相对论:相对论的提出,同样受到很多的指责,有很多人认为它是错误的,并大大阻碍了社会的发展。然而这种观点并不被主流科学界所接受。
爱因斯坦和他的相对论
除了量子理论以外,1905年刚刚得到博士学位的爱因斯坦发表的一篇题为《论动体的电动力学》的文章引发了二十世纪物理学的另一场革命。文章研究的是物体的运动对光学现象的影响,这是当时经典物理学面对的另一个难题。
十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速C传播的电磁波的存在。到十九世纪末,实验完全证实了麦克斯韦理论。电磁波是什么?它的传播速度C是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种特殊物质叫做“以太”,电磁波是以太振动的传播。但人们发现,这是一个充满矛盾的理论。如果认为地球是在一个静止的以太中运动,那么根据速度迭加原理,在地球上沿不同方向传播的光的速度必定不一样,但是实验否定了这个结论。如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符。
1887年迈克尔逊和莫雷利用光的干涉现象进行了非常精确的测量,仍没有发现地球有相对于以太的任何运动。对此,洛仑兹(H.A.Lorentz)提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。爱因斯坦从完全不同的思路研究了这一问题。他指出,只要摒弃牛顿所确立的绝对空间和绝对时间的概念,一切困难都可以解决,根本不需要什么以太。
爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础。第一个叫做相对性原理。它是说:如果坐标系K'相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K′。第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度。
从表面上看,光速不变似乎与相对性原理冲突。因为按照经典力学速度的合成法则,对于K′和K这两个做相对匀速运动的坐标系,光速应该不一样。爱因斯坦认为,要承认这两个原理没有抵触,就必须重新分析时间与空间的物理概念。
经典力学中的速度合成法则实际依赖于如下两个假设:1.两个事件发生的时间间隔与测量时间所用的钟的运动状态没有关系;2.两点的空间距离与测量距离所用的尺的运动状态无关。爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃。这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性。在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等。距离也有了相对性。
如果设K坐标系中一个事件可以用三个空间坐标x、y、z和一个时间坐标t来确定,而K′坐标系中同一个事件由x′、y′、z′和t′来确定,则爱因斯坦发现,x′、y′、z′和t′可以通过一组方程由x、y、z和t求出来。两个坐标系的相对运动速度和光速c是方程的唯一参数。这个方程最早是由洛仑兹得到的,所以称为洛仑兹变换。
利用洛仑兹变换很容易证明,钟会因为运动而变慢,尺在运动时要比静止时短,速度的相加满足一个新的法则。相对性原理也被表达为一个明确的数学条件,即在洛仑兹变换下,带撇的空时变量x'、y'、z'、t'将代替空时变量x、y、z、t,而任何自然定律的表达式仍取与原来完全相同的形式。人们称之为普遍的自然定律对于洛仑兹变换是协变的。这一点在我们探索普遍的自然定律方面具有非常重要的作用。
此外,在经典物理学中,时间是绝对的。它一直充当着不同于三个空间坐标的独立角色。爱因斯坦的相对论把时间与空间联系起来了。认为物理的现实世界是各个事件组成的,每个事件由四个数来描述。这四个数就是它的时空坐标t和x、y、z,它们构成一个四维的连续空间,通常称为闵可夫斯基四维空间。在相对论中,用四维方式来考察物理的现实世界是很自然的。狭义相对论导致的另一个重要的结果是关于质量和能量的关系。在爱因斯坦以前,物理学家一直认为质量和能量是截然不同的,它们是分别守恒的量。爱因斯坦发现,在相对论中质量与能量密不可分,两个守恒定律结合为一个定律。他给出了一个著名的质量-能量公式:E=mc2,其中c为光速。于是质量可以看作是它的能量的量度。计算表明,微小的质量蕴涵着巨大的能量。这个奇妙的公式为人类获取巨大的能量,制造原子弹和氢弹以及利用原子能发电等奠定了理论基础。
对爱因斯坦引入的这些全新的概念,大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔奖金授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了光电效应的定律。”对于相对论只字未提。
爱因斯坦于1915年进一步建立起了广义相对论。狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了。他引入了一个等效原理,认为我们不可能区分引力效应和非匀速运动,即非匀速运动和引力是等效的。他进而分析了光线在靠近一个行量附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要。可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线。基于这些讨论,爱因斯坦导出了一组方程,它们可以确定由物质的存在而产生的弯曲空间几何。利用这个方程,爱因斯坦计算了水星近日点的位移量,与实验观测值完全一致,解决了一个长期解释不了的困难问题,这使爱因斯坦激动不已。他在写给埃伦菲斯特的信中这样写道:“……方程给出了近日点的正确数值,你可以想象我有多高兴!有好几天,我高兴得不知怎样才好。”
1915年11月25日,爱因斯坦把题为“万有引力方程”的论文提交给了柏林的普鲁士科学院,完整地论述了广义相对论。在这篇文章中他不仅解释了天文观测中发现的水星轨道近日点移动之谜,而且还预言:星光经过太阳会发生偏折,偏折角度相当于牛顿理论所预言的数值的两倍。第一次世界大战延误了对这个数值的测定。1919年5月25日的日全食给人们提供了大战后的第一次观测机会。英国人爱丁顿奔赴非洲西海岸的普林西比岛,进行了这一观测。11月6日,汤姆逊在英国皇家学会和皇家天文学会联席会议上郑重宣布:得到证实的是爱因斯坦而不是牛顿所预言的结果。他称赞道“这是人类思想史上最伟大的成就之一。爱因斯坦发现的不是一个小岛,而是整整一个科学思想的新大陆。”泰晤士报以“科学上的革命”为题对这一重大新闻做了报道。消息传遍全世界,爱因斯坦成了举世瞩目的名人。广义相对论也被提高到神话般受人敬仰的宝座。
从那时以来,人们对广义相对论的实验检验表现出越来越浓厚的兴趣。但由于太阳系内部引力场非常弱,引力效应本身就非常小,广义相对论的理论结果与牛顿引力理论的偏离很小,观测非常困难。七十年代以来,由于射电天文学的进展,观测的距离远远突破了太阳系,观测的精度随之大大提高。特别是1974年9月由麻省理工学院的泰勒和他的学生惠斯勒,用305米口径的大型射电望远镜进行观测时,发现了脉冲双星,它是一个中子星和它的伴星在引力作用下相互绕行,周期只有0.323天,它的表面的引力比太阳表面强十万倍,是地球上甚至太阳系内不可能获得的检验引力理论的实验室。经过长达十余年的观测,他们得到了与广义相对论的预言符合得非常好的结果。由于这一重大贡献,泰勒和惠斯勒获得了1993年诺贝尔物理奖。
相对论
十九世纪后期,由于光的波动理论的确立,科学家相信一种叫“以太”的连续介质充满了宇宙空间,就象空气中的声波一样,光线和电磁信号是“以太”中的波。然而,与空间完全充满“以太”的思想相悖的结果不久就出现了:根据“以太”理论应得出,光线传播速度相对于“以太”应是一个定值,因此,如果你沿与光线传播相同的方向行进,你所测量到的光速应比你在静止时测量到的光速低;反之,如果你沿与光线传播相反的方向行进,你所测量到的光速应比你在静止时测量到的光速高。但是,一系列实验都没有找到造成光速差别的证据。
在这些实验当中,阿尔波特·迈克尔逊和埃迪沃德·莫里1887年在美国俄亥俄州克里夫兰的凯斯研究所所完成的测量,是最准确细致的。他们对比两束成直角的光线的传播速度,由于围着自转轴的转动和绕太阳的公转,根据推理,地球应穿行在“以太”中,因此上述成直角的两束光线应因地球的运动而测量到不同的速度,爱尔兰物理学家乔治·费兹哥立德和荷兰物理学家亨卓克·洛仑兹,最早认为相对于“以太”运动的物体在运动方向的尺寸会收缩,而相对于“以太”运动的时钟会变慢。并且洛仑兹提出了著名的洛仑兹变换。而对“以太”,费兹哥立德和洛仑兹当时都认为是一种真实存在的物质。而法国数学家庞加莱怀疑这一点,并预见全新的力学会出现。
马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的。绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是又能够变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理提出了洛仑兹变换。创立了狭义相对论。
爱因斯坦死后的几十年里,其形象不断地被拔高。他写的书几十年长销不衰,他的话经常被流行文化引征据用,他的肖像被印在T恤衫上和咖啡杯上,可以说商业用途极为广泛。被奉为圣人,其形象却从不咄咄逼人,爱因斯坦自始至终的形象都是:一个温和文雅的天才。他有多少天分,同样就有多少慈善。成就和人格的完美结合,使得许多人视爱因斯坦为圣人。但实际上,当我们越关注爱因斯坦外在的高大形象,反而越不能了解那个真正的爱因斯坦和他所做过的一切。
幸亏有了一个坚持不懈的出版计划,20世纪最伟大的科学家其真正面貌才得以最终成型。这就是《爱因斯坦全集》。这套将公布爱因斯坦约14000篇原始文件的全集共有25卷,现在已经出版到第8卷。全套文集不仅包括了爱因斯坦所有科学文献以供研究者追随这位科学家的思想历程,而且还公布了其大量的书信来往,展现了其真实的为人。在那里面,你可以深深地感受到爱因斯坦的智慧和魅力还有令人尊敬的勇气和社会正义感。但另一方面,文集也说明了爱因斯坦远不是一个圣人,他也尖酸刻薄,也反叛,甚至可以说是有点放荡。
当你走进美国自然博物馆阴暗的展览大厅,耳边响起英国著名作曲家霍尔斯特在1918年创作的《ThePlanets(行星组曲)》时,那种极不和谐、有点刺耳的音调仿佛在提醒游客:爱因斯坦的内心世界就是这样矛盾、这么不和谐的。
一直以来,流传着许多关于爱因斯坦具有超自然能力的各种传说,他的姐姐说他的后脑勺又大又有棱角。
以前曾流传过许多关于爱因斯坦具有超自然能力的各种传说。(最为典型的一个故事,称爱因斯坦小时候说出的第一句话竟然是抱怨牛奶太热了,目瞪口呆的父母问他为什么以前一直不开口说话。谁料这个小天才回答:“因为,以前的一切都没有什么问题呀!”)
根据爱因斯坦的的姐姐玛亚在一部从未出版过的自传中称,爱因斯坦的智力发展很慢,而且到了很晚才开始会说话。玛亚说:“当爱因斯坦刚出生的时候,母亲看见他那又巨大又有棱角的后脑勺时都快吓坏了。”
“爱因斯坦的大脑的确异于常人,大脑海马区左侧的神经细胞明显比右侧的大,并且分布很规则”(加州大学Zaidel博士)
美国加州大学的Zaidel博士称,爱因斯坦的大脑与普通人相比,存在着“显著的差异”。Zaidel研究了爱因斯坦的两个大脑组织切片(生物实验中经常使用的研究方法),这两个切片含有大脑海马区的神经细胞,它们负责处理语言与想象的工作。通过与10个普通人的大脑切片对比,Zaidel博士发现爱因斯坦大脑组织存在显著的“优势”:爱因斯坦大脑海马区左侧的神经细胞明显比右侧的大,并且分布很规则;而普通人该组织区的神经细胞看上去很小,而且表现得“非常不规则”。
但是Zaidel指出,爱因斯坦大脑组织的特性“是天生的,还是后天发展的结果”,目前尚不能定论。
“我没有任何特殊的才能。我拥有的只是极其强烈的好奇心。”“我的智力发展很迟缓,我一直到了完全长大以后,才开始对时空问题感到疑惑的。”(爱因斯坦)
那么,爱因斯坦究竟是一个怎样的人,他如何“看到”别人“看不到”的东西?爱因斯坦把其成功归结于他的起步慢。他有一次写道:“一个正常的成年人从来不会停止思考关于时间和空间的问题。但是我的智力发展却很迟缓,我一直到了完全长大以后,才开始对时空问题感到疑惑。”
在1915年,爱因斯坦曾对一名校友说过:“一个人不应该追求那些容易得到的东西,所以我们还是继续努力吧。”
哈佛大学的物理兼科学史专家格雷得·和顿是爱因斯坦1955年去世后第一个获许翻看档案的学者。如今76岁的和顿说当年他翻看爱因斯坦的档案时,被其独一无二的光辉所完全折服。“爱因斯坦的思考方式完全不像教科书上所说的那样,先做实验,然后得出理论,最后检验结论,他而是几乎完全靠‘想’进行创造,以其极度跳跃的思维来完成他的‘实验’。爱因斯坦的智慧是超乎常人的。”
幼年、青年、老年时期的爱因斯坦
相对论改变了世界
爱因斯坦一生大约发表过300篇科学论文,但归纳其最重要的理论有:
相对论
1905年发表了狭义相对论。这个理论指出在宇宙中唯一不变的是光线在真空中的速度,其它任何事物——速度、长度、质量和经过的时间,都随观察者的参考系(特定观察)而变化。
时空
爱因斯坦发表他的相对论之二百年前,英国物理学家艾萨克·牛顿(1643~1727)提出时间和空间都是绝对的,空间和时间是完全分开的。然而,在相对论数学中,时间和三维空间——长、宽和高,一起构成一个四维空间框架,叫做时空关联集。
质量和能量
爱因斯坦从他的狭义相对论中推导出等式E=MC2(这里E是能量,M是质量,C是恒定的光速),他用这个等式解释了质量和能量是等价的。现在认为,质量和能量是同一种物质的不同形式,称为质能。例如,如果一个物体的能量减少了一定量E,则它的质量也减少等于MC2的量,然而,质能不会消失,只不过以另一种形式被释放,它叫辐射能量。
广义相对论
1915年发表了广义相对论,解释了引力作用和加速度作用没有差别的原因。他还解释了引力是如何和时空弯曲联系起来的,利用数学,爱因斯坦指出物体使周围空间、时间弯曲,在物体具有很大的相对质量(例如一颗恒星)时,这种弯曲可使从它旁边经过的任何其它事物,即使是光线,改变路径。
虫洞
理论上,虫洞是一个黑洞,它的质量非常大,把时空弯曲吸进了它自身之中,它的口开向宇宙的另一个空间及时间,或者也许完全进入另一个宇宙空间。也许能够利用虫洞建立一个时间旅行机器,但许多科学家们指出这个机器不可能重返到它自身被创建的时间之前。
他还是一个发明匠
我们常常把爱因斯坦想象成一个总在开小差的天才,他的魂儿常常被时空勾了去。但其实,爱因斯坦也是一个动手能力很强的发明家。他的父母开了一家电力厂,并常常鼓励小爱因斯坦以后当一个工程师。
他曾经和别人一起合作发明了一套不需拆卸的冷冻系统,后来在一战期间,又曾为德国空军设计了一款机翼。
爱因斯坦曾在瑞士伯尔尼专利局当过7年评估员。尽管他在工作的时候常常走神发白日梦(在用脑子做实验),但爱因斯坦对自己的工作还是颇为胜任的,并在1906年获得了一次升职的机会。此外,他在那时就拥有了好几个属于自己的专利,包括一个在20世纪20年代和别人合作发明的一套不需拆卸的冷冻系统。在一战期间,爱因斯坦又为德国空军设计了一款机翼,并进行到了实验阶段。可惜当时那个负责测试的飞行员向上级抱怨说飞机装上了爱因斯坦所设计的机翼后看上去就像是一只“怀孕的鸭子”,计划最终流产。
他与FBI“秘密交锋”
尽管爱因斯坦在私生活中很冷漠,但他在公众场合中却表现出很强的社交能力,他甚至是一个天生适合当名人的人。爱因斯坦拍照时非常上镜,而且拥有一副很有磁性的嗓音。在一部关于爱因斯坦的记录片中有这么一个镜头:爱因斯坦被一群记者簇拥着而从容应付。有一个记者问他:“爱因斯坦教授,请问您为自己成为一个美国人而感到高兴吗?”爱因斯坦讽刺他:“既然你站在这里这样问我,那我的回答是‘当然了,我感到非常荣幸’”。爱因斯坦在1930年12月11日的旅行日记中有一段话就更加直接地奚落记者。“一群记者在长岛登上了我们的船,问了我一些极为愚蠢的问题,当我用一些毫不值钱的滥调回答他们的时候,他们却像如获至宝般欢喜而归。”
他在科学界与政界都树下了不少敌人,他支持犹太人在中东建国,但又很早就警告说应当关注当地阿拉伯人的利益。
尽管爱因斯坦在感情上极其喜恶分明,但最典型的体现在他参与的社会和政治事端。爱因斯坦曾经不知疲倦地帮助那些纳粹德国的难民逃到美国,他还致力于在耶路撒冷建立希伯来大学以作为犹太人科学家的避难所。爱因斯坦支持犹太人在巴勒斯坦重建犹太人的王国,但他同时早在1955年就警告说:“我们的建国政策中最关键的一环是要给予一直在中东地区生活的阿拉伯人们同样平等的权利。”作为一个忠实的社会主义者,爱因斯坦对资本主义极不信任,他相信,建立“世界政府”是有效控制核武器发展的唯一途径,并只有这样才能从根本上避免战争的发生。
他是一个激进主义者,在德国,他上了纳粹党的黑名单,逃到美国后,FBI花费了22年的时间一直监视他,不仅诬陷他是间谍,还想方设法要把他驱逐出境
爱因斯坦是人权运动最早期的倡导者之一,这是爱因斯坦作为一个激进主义者最鲜为人知的一面。爱因斯坦不仅利用自己的声望极力反对私刑拷问,他还参加了(美国)全国有色人种协进会(NAACP)的工作。
因此,爱因斯坦这种对抗当局的行为使他在科学界和政界中树下了不少敌人。他的名字最早在1922年就被写进了纳粹党的黑名单,还有许多颇有声望的德国物理学家也公开称爱因斯坦的研究为“犹太人的物理学”。这种愚昧的攻击甚至在爱因斯坦与1933年逃到美国普林斯顿大学后也没有停止。
逃到美国后,其激进行为同样让FBI感到非常不安,美国联邦调查局前局长胡佛和爱因斯坦之间由此进行了一场长达20多年的“秘密战争”。在胡佛的指示下,美国联邦调查局一共搜集了1800多页的有关爱因斯坦的档案,而他们的目的就是要把爱因斯坦驱逐出美国。胡佛的结论是:爱因斯坦实际上是俄国派到柏林的一个间谍。不过这种荒谬的说法竟然奏效了,爱因斯坦最终被阻挡在曼哈顿原子弹计划之外。这就是为什么爱因斯坦建议罗斯福研制核弹却从未参与该工程的原因。
“婚姻是披着文明外衣的奴隶制”
毋庸讳言,爱因斯坦对待女性的看法,确实受到过德国哲学家叔本华思想的深刻影响。他从未把爱情看得是高于一切。他在离婚前就有过外遇,并且在第二次结婚后,也有过越轨行为。他认为,从本质上说,婚姻都是愚蠢的,自己也多次谈到了他的不适合于家庭生活的个性。
“我曾经有过两次丢脸的婚姻”。爱因斯坦对爱情的激情是有节制的,他从未让激情淹没自己冷静的理性。
爱因斯坦的私生活常为人所诟病。说的最多的是他的两次“丢脸的婚姻”以及穿插其中的几次婚外情。有作者甚至暗示他与终生未婚的女秘书杜卡斯之间存在不正当的关系。
爱因斯坦与第一任妻子米勒瓦在大学相识,但受到了来自家庭的强烈反对。一直到了米勒瓦为爱因斯坦生下了一个女孩,取名丽莎尔,两人才在1903年最终成了婚。不过,爱因斯坦却从来没有见过自己的私生女。而且丽莎尔在幼年时就夭折了。
爱因斯坦在信中对米勒瓦所流露出的“我怎么没有早点遇到你,我的小宝贝!”的这种柔情非常的短暂,在爱因斯坦声望益高,在两个小儿子出世后,而米勒瓦也开始出现了精神分裂症的症状时,夫妻间的恩爱很快就消失了,剩下的只有互相的嘲笑和欺骗。爱因斯坦在1913年写给他的堂妹艾尔莎的信上说:“(米勒瓦)是一个很不友善,毫无幽默感的生物——只要她在,就会拼命破坏别人快乐的生活。”艾尔莎那时候已经成为了爱因斯坦的情人,并后来于1919年成为他的第二任妻子。
“我不会希望自己嫁给他,但我们依然喜欢他,尽管他存在许多的缺点。”(卡拉普爱斯)
狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。
相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。
3 狭义相对论基本原理
物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。
伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,
狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。
相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。
3 狭义相对论基本原理
物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。
伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。
著名的麦克尔逊--莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理,光速不变原理。
由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0。99倍光速,人的速度也是0。99倍光速,那么地面观测者的结论不是1。98倍光速,而是0。999949倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。
4 狭义相对论效应
根据狭义相对性原理,惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性,而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个关性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间。在今后的广义相对论中可以知道,非惯性系中,时空是不均匀的,也就是说,在同一非惯性系中,没有统一的时间,因此不能建立统一的同时性。
相对论导出了不同惯性系之间时间进度的关系,发现运动的惯性系时间进度慢,这就是所谓的钟慢效应。可以通俗的理解为,运动的钟比静止的钟走得慢,而且,运动速度越快,钟走的越慢,接近光速时,钟就几乎停止了。
尺子的长度就是在一惯性系中"同时"得到的两个端点的坐标值的差。由于"同时"的相对性,不同惯性系中测量的长度也不同。相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这就是所谓的尺缩效应,当速度接近光速时,尺子缩成一个点。
5 狭义相对论效应2
由以上陈述可知,钟慢和尺缩的原理就是时间进度有相对性。也就是说,时间进度与参考系有关。这就从根本上否定了牛顿的绝对时空观,相对论认为,绝对时间是不存在的,然而时间仍是个客观量。比如在下期将讨论的双生子理想实验中,哥哥乘飞船回来后是15岁,弟弟可能已经是45岁了,说明时间是相对的,但哥哥的确是活了15年,弟弟也的确认为自己活了45年,这是与参考系无关的,时间又是"绝对的"。这说明,不论物体运动状态如何,它本身所经历的时间是一个客观量,是绝对的,这称为固有时。也就是说,无论你以什么形式运动,你都认为你喝咖啡的速度很正常,你的生活规律都没有被打乱,但别人可能看到你喝咖啡用了100年,而从放下杯子到寿终正寝只用了一秒钟。
6 时钟佯谬或双生子佯谬
相对论诞生后,曾经有一个令人极感兴趣的疑难问题---双生子佯谬。一对双生子A和B,A在地球上,B乘火箭去做星际旅行,经过漫长岁月返回地球。爱因斯坦由相对论断言,二人经历的时间不同,重逢时B将比A年轻。许多人有疑问,认为A看B在运动,B看A也在运动,为什么不能是A比B年轻呢?由于地球可近似为惯性系,B要经历加速与减速过程,是变加速运动参考系,真正讨论起来非常复杂,因此这个爱因斯坦早已讨论清楚的问题被许多人误认为相对论是自相矛盾的理论。如果用时空图和世界线的概念讨论此问题就简便多了,只是要用到许多数学知识和公式。在此只是用语言来描述一种最简单的情形。不过只用语言无法更详细说明细节,有兴趣的请参考一些相对论书籍。我们的结论是,无论在那个参考系中,B都比A年轻。
为使问题简化,只讨论这种情形,火箭经过极短时间加速到亚光速,飞行一段时间后,用极短时间掉头,又飞行一段时间,用极短时间减速与地球相遇。这样处理的目的是略去加速和减速造成的影响。在地球参考系中很好讨论,火箭始终是动钟,重逢时B比A年轻。在火箭参考系内,地球在匀速过程中是动钟,时间进程比火箭内慢,但最关键的地方是火箭掉头的过程。在掉头过程中,地球由火箭后方很远的地方经过极短的时间划过半个圆周,到达火箭的前方很远的地方。这是一个"超光速"过程。只是这种超光速与相对论并不矛盾,这种"超光速"并不能传递任何信息,不是真正意义上的超光速。如果没有这个掉头过程,火箭与地球就不能相遇,由于不同的参考系没有统一的时间,因此无法比较他们的年龄,只有在他们相遇时才可以比较。火箭掉头后,B不能直接接受A的信息,因为信息传递需要时间。B看到的实际过程是在掉头过程中,地球的时间进度猛地加快了。在B看来,A现实比B年轻,接着在掉头时迅速衰老,返航时,A又比自己衰老的慢了。重逢时,自己仍比A年轻。也就是说,相对论不存在逻辑上的矛盾。
7 狭义相对论小结
相对论要求物理定律要在坐标变换(洛伦兹变化)下保持不变。经典电磁理论可以不加修改而纳入相对论框架,而牛顿力学只在伽利略变换中形势不变,在洛伦兹变换下原本简洁的形式变得极为复杂。因此经典力学与要进行修改,修改后的力学体系在洛伦兹变换下形势不变,称为相对论力学。
狭义相对论建立以后,对物理学起到了巨大的推动作用。并且深入到量子力学的范围,成为研究高速粒子不可缺少的理论,而且取得了丰硕的成果。然而在成功的背后,却有两个遗留下的原则性问题没有解决。第一个是惯性系所引起的困难。抛弃了绝对时空后,惯性系成了无法定义的概念。我们可以说惯性系是惯性定律在其中成立的参考系。惯性定律实质一个不受外力的物体保持静止或匀速直线运动的状态。然而"不受外力"是什么意思?只能说,不受外力是指一个物体能在惯性系中静止或匀速直线运动。这样,惯性系的定义就陷入了逻辑循环,这样的定义是无用的。我们总能找到非常近似的惯性系,但宇宙中却不存在真正的惯性系,整个理论如同建筑在沙滩上一般。第二个是万有引力引起的困难。万有引力定律与绝对时空紧密相连,必须修正,但将其修改为洛伦兹变换下形势不变的任何企图都失败了,万有引力无法纳入狭义相对论的框架。当时物理界只发现了万有引力和电磁力两种力,其中一种就冒出来捣乱,情况当然不会令人满意。
爱因斯坦只用了几个星期就建立起了狭义相对论,然而为解决这两个困难,建立起广义相对论却用了整整十年时间。为解决第一个问题,爱因斯坦干脆取消了惯性系在理论中的特殊地位,把相对性原理推广到非惯性系。因此第一个问题转化为非惯性系的时空结构问题。在非惯性系中遇到的第一只拦路虎就是惯性力。在深入研究了惯性力后,提出了著名的等性原理,发现参考系问题有可能和引力问题一并解决。几经曲折,爱因斯坦终于建立了完整的广义相对论。广义相对论让所有物理学家大吃一惊,引力远比想象中的复杂的多。至今为止爱因斯坦的场方程也只得到了为数不多的几个确定解。它那优美的数学形式至今令物理学家们叹为观止。就在广义相对论取得巨大成就的同时,由哥本哈根学派创立并发展的量子力学也取得了重大突破。然而物理学家们很快发现,两大理论并不相容,至少有一个需要修改。于是引发了那场著名的论战:爱因斯坦VS哥本哈根学派。直到现在争论还没有停止,只是越来越多的物理学家更倾向量子理论。爱因斯坦为解决这一问题耗费了后半生三十年光阴却一无所获。不过他的工作为物理学家们指明了方向:建立包含四种作用力的超统一理论。目前学术界公认的最有希望的候选者是超弦理论与超膜理论。
8 广义相对论概述
相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说,以及二十一世纪的主旋律--黑洞等等。这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言"全世界只有十二个人懂相对论"。甚至有人说"全世界只有两个半人懂相对论"。更有甚者将相对论与"通灵术","招魂术"之类相提并论。其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的。
相对论应用的几何学并不是普通的欧几里得几何,而是黎曼几何。相信很多人都知道非欧几何,它分为罗氏几何与黎氏几何两种。黎曼从更高的角度统一了三种几何,称为黎曼几何。在非欧几何里,有很多奇怪的结论。三角形内角和不是180度,圆周率也不是3。14等等。因此在刚出台时,倍受嘲讽,被认为是最无用的理论。直到在球面几何中发现了它的应用才受到重视。
空间如果不存在物质,时空是平直的,用欧氏几何就足够了。比如在狭义相对论中应用的,就是四维伪欧几里得空间。加一个伪字是因为时间坐标前面还有个虚数单位i。当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何。
相对论预言了引力波的存在,发现了引力场与引力波都是以光速传播的,否定了万有引力定律的超距作用。当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。一般情况下,看到的是个环,被称为爱因斯坦环。爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。当时宇宙学认为,宇宙是无限的,静止的,恒星也是无限的。于是他不惜修改场方程,加入了一个宇宙项,得到一个稳定解,提出有限无边宇宙模型。不久哈勃发现著名的哈勃定律,提出了宇宙膨胀学说。爱因斯坦为此后悔不已,放弃了宇宙项,称这是他一生最大的错误。在以后的研究中,物理学家们惊奇的发现,宇宙何止是在膨胀,简直是在爆炸。极早期的宇宙分布在极小的尺度内,宇宙学家们需要研究粒子物理的内容来提出更全面的宇宙演化模型,而粒子物理学家需要宇宙学家们的观测结果和理论来丰富和发展粒子物理。这样,物理学中研究最大和最小的两个目前最活跃的分支:粒子物理学和宇宙学竟这样相互结合起来。就像高中物理序言中说的那样,如同一头怪蟒咬住了自己的尾巴。值得一提的是,虽然爱因斯坦的静态宇宙被抛弃了,但它的有限无边宇宙模型却是宇宙未来三种可能的命运之一,而且是最有希望的。近年来宇宙项又被重新重视起来了。黑洞问题将在今后的文章中讨论。黑洞与大爆炸虽然是相对论的预言,它们的内容却已经超出了相对论的限制,与量子力学,热力学结合的相当紧密。今后的理论有希望在这里找到突破口。
9 广义相对论基本原理
由于惯性系无法定义,爱因斯坦将相对性原理推广到非惯性系,提出了广义相对论的第一个原理:广义相对性原理。其内容是,所有参考系在描述自然定律时都是等效的。这与狭义相对性原理有很大区别。在不同参考系中,一切物理定律完全等价,没有任何描述上的区别。
相对论是关于时空和引力的基本理论,主要由爱因斯坦创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。
狭义相对论
主条目:狭义相对论
狭义相对论,是只限于讨论惯性系情况的相对论。牛顿时空观认为空间是平直的、各向同性的和各点同性的的三维空间,时间是独立于空间的单独一维(因而也是绝对的)。狭义相对论认为空间和时间并不相互独立,而是一个统一的四维时空整体,并不存在绝对的空间和时间。在狭义相对论中,整个时空仍然是平直的、各向同性的和各点同性的,这是一种对应于“全局惯性系”的理想状况。狭义相对论将真空中光速为常数作为基本假设,结合狭义相对性原理和上述时空的性质可以推出洛仑兹变换。
广义相对论
主条目:广义相对论
广义相对论是爱因斯坦(Albert Einstein)在1915年发表的理论。爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上(目前实验证实,在10 − 12的精确度范围内,仍没有看到引力质量与惯性质量的差别)。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身故有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走。
物体在越接近光速运动时.时间相对流逝越慢
文章标题: 狭义相对论将什么为定值
文章地址: http://www.xdqxjxc.cn/jingdianwenzhang/149148.html