欢迎访问喜蛋文章网
你的位置:首页 > 经典文章 > 文章正文

Russia和Prussia有什么联系,为什么名字很像

时间: 2022-01-20 14:01:02 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 94次

Russia和Prussia有什么联系,为什么名字很像

求人教版小学数学六年级95页“七桥问题”答案?、

著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。

有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。
当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。
Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。
后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。
七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.
欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。

接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!

1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。

七桥问题  七桥问题Seven Bridges Problem

  18世纪著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。

  有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。

  当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。

  Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。 

  后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。

  七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.

  欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。 

  接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案! 

  1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。 

  七桥问题和欧拉定理。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。 

  此题被人教版小学数学第十二册书收录.在95页。

  此题也被人教版初中第一册收录.在一百二十一页.

七桥问题 七桥问题Seven Bridges Problem
18世纪著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。
有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。
当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。
Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。
后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。
七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.
欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。
接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!
1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。
七桥问题和欧拉定理。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。
此题被人教版小学数学第十二册书收录.在95页。
此题也被人教版初中第一册收录.在一百二十一页.

http://baike.baidu.com/view/142962.html?wtp=tt
国的古城康尼斯堡——它就是今天俄罗斯西北边界城市加里宁格勒。

布格河横贯康尼斯堡城区,它有两条支流,一条称新河,另一条叫旧河,两河在城中心会合后,成为一条主流,叫做大河。在新旧两河与大河之间,夹着一块岛形地带,这里是城市的繁华地区。全城分为北、东、南、岛四个区,各区之间共有七座桥梁联系着。

人们长期生活在河畔、岛上,来往于七桥之间。有人提出这样一个问题:能不能一次走遍所有的七座桥,而每座桥只准经过一次?问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。最后,人们只好把这个问题向俄国科学院院士欧拉提出,请他帮助解决。

公元1737年,欧拉接到了“七桥问题”,当时他三十岁。他心里想:先试试看吧。他从中间的岛区出发,经过一号桥到达北区,又从二号桥回到岛区,过四号桥进入东区,再经五号桥到达南区,然后过六号桥回到岛区。现在,只剩下三号和七号两座桥没有通过了。显然,从岛区要过三号桥,只有先过一号、二号或四号桥,但这三座桥都走过了。这种走法宣告失败。欧拉又换了一种走法:

岛东北岛南岛北

这种走法还是不行,因为五号桥还没有走过。

欧拉连试了好几种走法都不行,这问题可真不简单!他算了一下,走法很多,共有

7×6×5×4×3×2×1=5040(种)。

好家伙,这样一种方法,一种方法试下去,要试到哪一天,才能得出答案呢?他想:不能这样呆笨地试下去,得想别的方法。

聪明的欧拉终于想出一个巧妙的办法。他用A代表岛区、B、C、D分别代表北、东、西三区,并用曲线弧或直线段表示七座桥,这样一来,七座桥的问题,就转变为数学分支“图论”中的一个一笔画问题,即能不能一笔头不重复地画出上面的这个图形。

欧拉集中精力研究了这个图形,发现中间每经过一点,总有画到那一点的一条线和从那一点画出来的一条线。这就是说,除起点和终点以外,经过中间各点的线必然是偶数。像上面这个图,因为是一个封闭的曲线,因此,经过所有点的线都必须是偶数才行。而这个图中,经过A点的线有五条,经过B、C、D三点的线都是三条,没有一个是偶数,从而说明,无论从那一点出发,最后总有一条线没有画到,也就是有一座桥没有走到。欧拉终于证明了,要想一次不重复地走完七座桥,那是不可能的。

天才的欧拉只用了一步证明,就概括了5040种不同的走法,从这里我们可以看到,数学的威力多么大呀!
七桥问题是没有解的。
米有

我发现普鲁士和俄罗斯很有可能从某种程度上存在的联系,具体如下

在一张地图上东普鲁士为:east prussiarn而俄罗斯大家都知道:russiarn是不是有什么联系???
普鲁士 英文就是 Prussia 和俄罗斯 Russia 就差一个字母~

呵呵 历史上古普鲁士人不是日耳曼人,也不是斯拉夫人...是和 拉脱维亚 立陶宛 这些国家人种相近~ 因该是波罗的人~ 后来被条顿骑士团 占领~ 接受基督教...后来还成为德意志的一个诸侯国~ 其实真正的普鲁士人 普鲁士语..很早就已经消亡了...

在曾经西欧人眼里 普鲁士和俄罗斯一样~来自东欧的野蛮民族~所以Prussia自然会联系到Russia~
普鲁士是欧洲历史地名,一般指17世纪至19世纪间的普鲁士王国。由于普鲁士在短短二百年内崛起并统一德国,建立了德意志第二帝国,所以普鲁士有时也是德国近代精神、文化的代名词。
就国名来说很相似是真的..【笑
普鲁士的土地最早住的似乎就是斯拉夫人..=-=

普鲁士在历史上和俄国有很多往来的呢..但是就名字的话我就不清楚了。
LZ你是故意的吧 你一定是来宣传露普的 红果果的奸情啊
随夫姓么 真可爱

哥尼斯堡七桥问题

濒临蓝色的波罗的海,有一座古老而美丽的城市,叫做哥尼斯堡(今俄罗斯加里宁格勒)。
布勒格尔河的两条支流在这里汇合,然后横贯全城,流入大海。河心有一个小岛。河水把城市分成了4块,于是,人们建造了7座各具特色的桥,把哥尼斯堡连成一体。
一天又一天,7座桥上走过了无数的行人。不知从什么时候起,脚下的桥梁触发了人们的灵感,一个有趣的问题在居民中传开了:
谁能够一次走遍所有的7座桥,而且每座桥都只通过一次?
 七桥问题Seven Bridges Problem
  18世纪著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。
  有关图论研究的热点问题。18世纪初普鲁士的哥尼斯堡,有一条河穿过,河上有两个小岛,有七座桥把两个岛与河岸联系起来(如左图上)。有个人提出一个问题:一个步行者怎样才能不重复、不遗漏地一次走完七座桥,最后回到出发点后来大数学家欧拉把它转化成一个几何问题(如左图下)——一笔画问题。他不仅解决了此问题,且给出了连通图可以一笔画的重要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2.
编辑本段推断方法
  当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。
  Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示

著名数学家欧拉
。 
  后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。
  七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.
  欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。
  接下来,欧拉运用图中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!
编辑本段最终成果
  问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。而利用普通数学知识,每座桥均走一次,那这七座桥所有的走法一共有5040种,而这么多情况,要一一试验,这将会是很大的工作量。但怎么才能找到成功走过每座桥而不重复的路线呢?因而形成了著名的“哥尼斯堡七桥问题”。
  1735年,有几名大学生写信给当时正在俄罗斯的彼得斯堡科学院任职的天才数学家欧拉,请他帮忙解决这一问题。欧拉在亲自观察了哥尼斯堡七桥后,认真思考走法,但始终没能成功,于是他怀疑七桥问题是不是原本就无解呢?
  1736年,在经过一年的研究之后,29岁的欧拉提交了《哥尼斯堡七桥》的论文,圆满解决了这一问题,同时开创了数学新一分支---图论。
  在论文中,欧拉将七桥问题抽象出来,把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。并由此得到了如图一样的几何图形。 若我们分别用A、B、C、D四个点表示为哥尼斯堡的四个区域。这样著名的“七桥问题”便转化为是否能够用一笔不重复的画出过此七条线的问题了。若可以画出来,则图形中必有终点和起点,并且起点和终点应该是同一点,由于对称性可知由A或C为起点得到的效果是一样的,若假设以A为起点和终点,则必有一离开线和对应的进入线,若我们定义进入A的线的条数为入度,离开线的条数为出度,与A有关的线的条数为A的度,则A的出度和入度是相等的,即A的度应该为偶数。即要使得从A出发有解则A的度数应该为偶数,而实际上A的度数是3为奇数,于是可知从A出发是无解的。同时若从B或D出发,由于B、D的度数分别是5、3,都是奇数,即以之为起点都是无解的。
  有上述理由可知,对于所抽象出的数学问题是无解的,即“七桥问题”也是无解的。

七桥问题答案?

要加图形
七桥问题Seven Bridges Problem
著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。
有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。
当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。
Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。
后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。
七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.
欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。
接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!
1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。
七桥问题和欧拉定理。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。
此题被人教版小学数学第十二册书收录.在95页。
18世纪,东普鲁士的首府哥尼斯堡是一座景色迷人的城市,普莱格尔河横贯城区,使这座城市锦上添花,显得更加风光旖旋。这条河有两条支流,在城中心汇成大河,在河的
中央有一座美丽的小岛。河上有七座各具特色的桥把岛和河岸连接起来。
每到傍晚,许多人都来此散步。人们漫步于这七座桥之间,久而久之,就形成了这样一个问题:能不能既不重复又不遗漏地一次相继走遍这七座桥?这就是闻名遐迩的“哥尼斯堡七桥问题。”每一个到此游玩或散心的人都想试一试,可是,对于这一看似简单的问题,没有一个人能符合要求地从七座桥上走一遍。这个问题后来竟变得神乎其神,说是有一支队伍,奉命要炸毁这七座桥,并且命令要他们按照七桥问题的要求去炸。
七桥问题也困绕着哥尼斯堡大学的学生们,在屡遭失败之后,他们给当时著名数学家欧拉写了一封信,请他帮助解决这个问题。
欧拉看完信后,对这个问题也产生了浓厚的兴趣。他想,既然岛和半岛是桥梁的连接地点,两岸陆地也是桥梁的连接地点,那就不妨把这四处地方缩小成四个点,并且把这七座桥表示成七条线。这样,原来的七桥问题就抽象概括了掉了。这显然并没有改变问题的本质特征。于是,七桥问题也就变成了一个一笔画的问题,即:能否笔不离纸,不重复地一笔画完整个图形。这竟然与孩子们的一笔画游戏联系起来
了。接着,欧拉就对“一笔画”问题进行了数学分析一笔画有起点和终点,起点和终点重合的图形称为封闭图形,否则便称为开放图形。除起点和终点外,一笔画中间可能出现一些曲线的交点。欧拉注意到,只有当笔沿着一条弧线到达交点后,又能沿着另一条弧线离开,也就是交汇于这些点的弧线成双成对时,一笔画才能完成,这样的交点就称为“偶点”。如果交汇于这些点的弧线不是成双成对,也就是有奇数条,则一笔画就不能实现,这样的点又叫做“奇点”。欧拉通过分析,得到了下面的结论:若是一个一笔画图形,要么只有两个奇点,也就是仅有起点和终点,这样一笔画成的图形是开放的;要么没有奇点,也就是终点和起点连接起来,这样一笔画成的图形是封闭的。由于七桥问题有四个奇点,所以要找到一条经过七座桥,但每座桥只走一次的路线是不可能的。
有名的“哥尼斯堡七桥问题”就这样被欧拉解决了。

在这里,我们可以看到欧拉解决这个问题的关键就是把“七桥问题”变成了一个“一笔画”问题,那么,欧拉又是怎样完成这一转变的呢?他把岛、半岛和陆地的具体属性舍去,而仅仅留下与问题有关的东西,这就是四个几何上的“点”;他再把桥的具体属性排除,仅留下一条几何上的“线”,然后,把“点”与“线”结合起来,这样就实现了从客观事物到图形的转变。我们把得到“点”和“线”的思维方法叫做抽象,把由“点”和“线”结合成图形的思维方法叫做概括。所谓抽象就是从客观事物中排除非本质属性,透过现象抽出本质属性的思维方法。概括就是将个别事物的本质属性结合起来的思维方法。
七桥一笔画答案
当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。

Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。

后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。

七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.

欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。

接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!
百科上有“七桥问题”
七桥问题就是一笔画问题,一笔是画不出来的。
七桥问题Seven Bridges Problem
著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。
有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。
当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。
Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。
后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。
七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.
欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。
接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!
1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。
七桥问题和欧拉定理。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。
此题被人教版小学数学第十二册书收录.在95页。
文章标题: Russia和Prussia有什么联系,为什么名字很像
文章地址: http://www.xdqxjxc.cn/jingdianwenzhang/132062.html
文章标签:有什么  很像  名字  Russia  Prussia
Top