欢迎访问喜蛋文章网
你的位置:首页 > 经典文章 > 文章正文

物理学中的守恒量来自于对称性,电荷来自于量子场相位的对称性,那色荷是来自于场的什么对称性

时间: 2021-04-06 12:08:39 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 110次

物理学中的守恒量来自于对称性,电荷来自于量子场相位的对称性,那色荷是来自于场的什么对称性

杨振宁是怎么获得诺贝尔奖的?

杨振宁还有李政道是不是因为在实验中的发现,得了诺贝尔奖。rn而且它证明了爱因斯坦的一些论断是错的,rn有这回事吗?

1957年,与李政道因共同提出宇称不守恒理论而获得诺贝尔物理学奖。

1950年,杨振宁关于p0衰变的论文以及他和Tiomno 关于β衰变中相位因子的论文奠定了他在此领域中的领先地位。1956年,θ-τ之谜是粒子物理学中最重要的难题,当时普遍讨论宇称是否可以不守恒。

杨振宁和李政道从θ-τ之谜这个具体的物理问题走到一个更普遍的问题,提出“宇称在强相互作用与电磁相互作用中守恒,但在弱相互作用中也许不守恒”的可能,将弱相互作用主宰的衰变过程独立出来,然后经具体计算,发现以前并没有实验证明在弱相互作用中宇称是否守恒。

他们更指出了好几类弱相互作用关键性实验,以测试弱相互作用中宇称是否守恒。吴健雄于1956年夏决定做他们指出的几类实验中的一项关于60Co β衰变的实验。

次年1月,她领导的实验组通过该实验证明在弱相互作用中宇称确实不守恒,引起全物理学界的大震荡。因为这项工作,杨振宁和李政道获得1957年的诺贝尔物理学奖。

扩展资料

1997年5月25日,中国科学院和江苏省人民政府宣布,国际小行星中心根据中国科学院紫金山天文台提名申报,将该台于1975年11月26日发现,国际编号为3421号小行星正式命名为“杨振宁星”。 

1999年5月,纽约州立大学石溪分校将理论物理研究所命名为“杨振宁理论物理研究所”。

2004年4月21日,清华大学设立“杨振宁讲座基金”,用于聘请国际著名教授及杰出年轻学者来清华大学高等研究中心潜心从事科学研究。

2008年11月29日,杨振宁当选“改革开放三十年中国最有影响的海外专家”。

杨振宁和李政道证明了“弱相互作用中宇称不守恒”,引起全物理学界的大震荡。因此杨振宁和李政道获得1957年的诺贝尔物理学奖。


杨振宇创建了杨—Mills规范场论,在主宰世界的4种基本相互作用中,弱电相互作用和强相互作用都由杨—Mills理论描述,而描述引力的爱因斯坦的广义相对论也与杨—Mills理论有类似之处。杨振宁称此为“对称支配力量”。

拓展资料:

杨振宇一生有众多学术成就,作为中国人首位诺贝尔奖得主。他的主要学术成就有:

相变理论、玻色子多体问题、玻色子多体问题、杨—Baxter方程、1维δ函数排斥势中的玻色子在有限温度的严格解、超导体磁通量子化的理论解释、非对角长程序、弱相互作用中宇称不守恒、时间反演、电荷共轭和宇称三种分立对称性、高能中微子实验的理论探讨、CP不守恒的唯象框架、规范场论的积分形式、规范场论与纤维丛理论的对应。

参考资料:【1】杨振宁、姚期智放弃外国国籍 转为中科院院士

【2】杨振宁:六岁第一次见到香蕉的诺贝尔奖得主

1956年杨振宁和李政道合作,深入研究了当时令人困惑的θ-τ之谜——即后来所谓的K介子有两种不同的衰变方式。杨振宁和李政道通过分析认识到,很可能在弱相互作用中宇称不守恒。他们仔细检查了过去的所有实验,确认这些实验并未证明弱相互作用中宇称守恒。在此基础上他们进一步提出了几种检验弱相互作用中宇称不守恒的实验途径。杨振宁和李政道的工作迅速得到了学术界的承认,并获得1957年诺贝尔物理奖。

杨振宁的物理学研究领域广泛,他在统计力学、粒子物理学理论和量子场理论等方面都取得了杰出成就,特别是他和李政道合作期间成果丰硕。在统计物理方面,他与李政道合作关于相变的一系列研究已经成为经典文献;他本人在1967年首先发现的Yang-Baxter方程为可积模型的研究开辟了全新的方向,对物理和数学都有广泛的影响;他还提出了非对角长程序的概念。

1956年杨振宁和李政道合作,深入研究了当时令人困惑的θ-τ之谜——即后来所谓的K介子有两种不同的衰变方式。杨振宁和李政道通过分析认识到,很可能在弱相互作用中宇称不守恒。

在此基础上他们进一步提出了几种检验弱相互作用中宇称不守恒的实验途径。杨振宁和李政道的工作迅速得到了学术界的承认,并获得1957年诺贝尔物理奖。

他们更指出了好几类弱相互作用关键性实验,以测试弱相互作用中宇称是否守恒。吴健雄于1956年夏决定做他们指出的几类实验中的一项关于60Co β衰变的实验。

2004年4月21日,清华大学设立“杨振宁讲座基金”,用于聘请国际著名教授及杰出年轻学者来清华大学高等研究中心潜心从事科学研究。

  1956年和李政道合作,深入研究了当时令人困惑的θ-τ之谜,即后来所谓的K 介子有两种不同的衰变方式,一种衰变成偶宇称态,一种衰变成奇宇称态;如果弱衰变过程宇称守恒,则他们必定是两种宇称状态不同的 K介子。但从质量和寿命来看,它们又应是同一种介子。
  杨振宁和李政道通过分析认识到,很可能在弱相互作用中宇称不守恒。他们仔细检查了过去的所有实验,确认这些实验并未证明弱相互作用中宇称守恒。在此基础上他们进一步提出了几种检验弱相互作用中宇称不守恒的实验途径。次年, 这一理论预见得到吴健雄小组的实验证实,他们也因次获得了1957年诺贝尔物理学奖。
  在粒子物理学方面,杨振宁的贡献还有费密--杨模型,与李政道合作的二分量中微子理论,与李政道和R.奥赫梅合作的关于电荷共轭变换和时间反演变换不守恒的分析,与李政道合作的高能中微子实验分析和关于W 粒子的研究。与吴大峻合作的宇称不守恒分析,规范场的积分形式理论,与吴大峻合作的规范场与纤维丛的关系。与邹祖德合作的高能碰撞理论等等。
  杨振宁,男,1922年10月1日生于安徽合肥三河镇,现安徽省合肥市肥西县,清华大学高等研究院教授,香港中文大学博文讲座教授。
  1942年毕业于西南联合大学物理学系,1944年在西南联合大学(清华大学研究院物理研究所)研究生毕业,1945年考取清华大学后赴美留学,在芝加哥大学深造,获博士学位。历任芝加哥大学讲师、普林斯顿高等研究院研究员、纽约州立大学石溪分校教授兼物理研究所所长,是中国科学院外籍院士、美国科学院院士、中央研究院院士、俄罗斯科学院院士、教廷宗座科学院院士、巴西科学院院士、委内瑞拉科学院院士、西班牙皇家科学院院士、英国皇家学会会员等。 1949年,与恩利克·费米合作,提出基本粒子第一个复合模型。1956年与李政道合作,提出“弱相互作用中宇称不守恒理论”,共同获1957年诺贝尔物理学奖。

现代物理学是相对于什么而言的

现代物理学以相对论和量子力学为基础,它的研究范围已经扩展为从基本粒子到宇宙天体的各个领域,形成了许多分支学科和边缘学科。
1.相对论
爱因斯坦(Albert Einstein,1879—1955)创建的相对论主要是时空的理论,它放弃了牛顿的绝对时间和绝对空间,建立了相对论时空观,使物理观念发生了一场根本的变革。在相对论中,局限于惯性参考系的理论称为狭义相对论,推广到一般参考系和包括引力场在内的理论称为广义相对论。
(1)狭义相对论。
1905年,爱因斯坦建立了狭义相对论。狭义相对论有两个基本假设:
① 相对性原理:所有惯性参考系都是等价的,物理规律对于所有惯性参考系都可以表述为相同形式;
② 光速不变原理:真空中的光速相对于任何惯性系沿任一方向恒为c,并与光源运动无关。
爱因斯坦从这两个假设出发,推导出两个惯性坐标系的时空变换关系即洛仑兹变换。从而彻底否定了“以太”的存在,并导出了运动刚体的“长度收缩”、运动时钟的“时间延缓”、同时的相对性及新的速度合成法则等。狭义相对论的时空观表明:第一,时间、空间和物质的运动是有密切联系的,时间和空间的特性是相对的,时间间隔和空间间隔的量度并不具有不变性,而是随物质运动状态的变化而变化的;第二,时间和空间存在着不可分割的联系,它们不能分割开来而独立存在,一切物理现象和过程都是在X、Y、Z和t的统一的四维连续区中存在着。
爱因斯坦把狭义相对论用于电动力学,证明了麦克斯韦方程组符合相对性原理,建立了相对论电动力学。在这里,电场和磁场已不再各自是一个矢量,而是一个反对称的四维张量,这个张量在不同的惯性系里按一定的规律变换。电场和磁场是这个统一的张量的不同分量,它们对于不同的惯性系表现出来的效应是不同的。在某一个惯性系中表现出的是一个纯粹的电场或磁场;在另一个惯性系中将同时表现出电场和磁场。这就是说,电磁场划分为电场部分和磁场部分,只具有相对意义,它与观察者所在的惯性系有关。
爱因斯坦还把相对论用于力学,建立了相对论力学。相对论力学能够正确地描述高速运动的规律,并且,当速度v<<c时,相对论力学能够过渡到经典力学。在相对论力学中,动量守恒和能量守恒这两条定律被统一成一条定律,给出了物体质量随速度增长的关系式以及质能关系式E=mc2,后者反映了质量与能量的等效关系。
(2)广义相对论。
从1907到1915年,爱因斯坦提出并建立了广义相对论。这个理论的出发点是引力质量和惯性质量相等这一事实,由此可以提出等效原理的假设:引力场同参照系的相当的加速度在物理上完全等价。根据广义相对论,万有引力效应是空间、时间弯曲的一种表现。空间、时间的弯曲结构,决定于物质的能量密度与动量密度在空间、时间中的分布;而空间、时间的弯曲结构,又反过来决定物体的运行轨道。爱因斯坦由广义相对论作出的谱线红移、光线弯曲、行星轨道近日点运动的预言,已经被一些实验证实。
2.量子力学
量子力学是研究微观粒子基本运动规律的理论。1923年,德布罗意(Louis de Broglie,1892—)提出物质波理论,开创了量子力学的时代。德布罗意认为,不仅光有波粒二象性,实物粒子也有波粒二象性。他还把描写物质粒子性的物理量与描写物质波动性的物理量联系起来,写出了以他的名字命名的关系式。1926年,薛定谔(1887--1961)根据德布罗意物质波思想,引入波函数,得出了量子力学的基本方程--薛定谔方程(波动方程),还进而建立了微扰理论,详细计算了散射等问题,完成了波动力学的创建工作。
差不多同时,海森伯(Werner Karl Heisenberg,1901—1976)等人从量子化条件出发建立了矩阵力学,并成功地解决了氢原子能级、斯塔克效应、氢原子在电场和磁场中能级的移动等问题。波动力学和矩阵力学是从两个不同的方面研究一个共同的问题,它们的效果是相同的,可以通过数学变换从一个理论转换为另一理论。人们把波动力学和矩阵力学合在一起,统称为量子力学。1925—1930年,狄拉克(Paul Adrien Maurice Dirac,1902—1984)对量子力学理论作了全面总结,还建立了相对论量子力学。
3.现代物理学的各个领域
(1)量子光学和现代光学。
1900年,普朗克(Max Planck,1858—1947)在解释黑体辐射时提出了能量子假说,认为各种频率的电磁波只能以一定的能量子方式从振子发射,能量子是不连续的,其大小只能是电磁波(或光)的频率与普朗克常数乘积的整数倍。1905年爱因斯坦发展了普朗克的能量子假设,把量子论贯穿到整个辐射和吸收过程中,提出了光量子(光子)理论,圆满解释了光电效应。其后的康普顿效应进一步证明了光量子理论。
量子力学的理论表明,光既具有波的性质,也具有粒子的性质,即波粒二象性。但光子不同于17世纪微粒说中的粒子,光子是和光的频率联系着的。
20世纪60年代前后,激光器的问世、全息摄影技术的应用、光纤通讯的发展、红外技术和遥感技术的出现,使光学进入现代光学的新时代,形成一些新的分支学科或边缘学科,如傅里叶光学、非线性光学、激光光谱学、集成光学等。
(2)原子物理。
1911年,卢瑟福(Ernst Rutherford,1871—1937)通过实验提出原子的有核模型,但在经典物理下,该模型同原子的稳定性发生了矛盾。1913年,玻尔(Niels Bohr,1885—1962)将量子观念引入原子系统,通过定态假设和频率假设两个假说建立了他的原子结构理论,并成功地解释了氢原子光谱规律。后来,人们又提出空间量子化的概念,研究了原子的壳层结构,发现了电子的自旋,不断修正了原子结构理论。
这种在量子力学之前形成的原子理论,是有很大局限性的,其关键在于未能用波粒二象性去考虑原子问题。在这个理论中,研究范围每扩大一步,一般都要附带进若干新的假设或某些经验公式,因此它不是一种完整的理论。只有以量子力学为基础对原子结构进行研究,才能得到原子结构的精确描述。
(3)原子核物理。
原子核物理研究原子核的特性、结构和变化。1920年以前,卢瑟福等人发现了质子,1932年查德威克(James Chadwick,1891—1974)发现中子,从此人们认识到原子核是由质子和中子构成的。此后,人们曾提出各种核模型假设来解释原子核的某些运动规律和现象。这些模型比较重要的有液滴模型、α粒子模型、费米气体模型、壳层模型、单粒子壳模型、多粒子壳模型、集体运动模型、统一模型等等。但直到目前还没有一个模型能够解释所有的实验事实,原子核结构仍然是人们正在进行探索的一个重大课题。
早在1896年,人们就发现了天然放射性现象,使传统的元素不变的观念受到巨大冲击。从1919年起,人们又实现了原子核的人工蜕变,这是实现人工核反应的重大突破。1938年,用中子轰击铀导致了核裂变的发现,根据相对论的质能关系,核裂变的质量亏损会产生巨大的能量。1942年,第一座原子反应堆在美国芝加哥大学建成并开始运转,开始了人类利用原子能的新纪元。1952年以后,人们又实现了轻核聚变,产生了比裂变大得多的能量。
(4)粒子物理。
目前实验上所能探测到的物质结构最深层次的研究,称为粒子物理学,也称为高能物理学。1932年安德森(Carl Darid Ander-son,1905—)在宇宙射线中发现了正电子,标志着粒子物理学的诞生。随后逐步发现了一系列新的粒子。早期发现的粒子,都是来自宇宙射线,50年代以后,由于各种加速器相继问世,大批粒子不断地被发现。到目前为止,已经发现的粒子有几百种之多,而且看来还会不断有新的发现。
①粒子之间的四种相互作用。
粒子之间存在着复杂的相互作用,能够产生和消灭。粒子之间有四种相互作用:引力相互作用、弱相互作用、电磁相互作用和强相互作用。四种相互作用都是随着粒子之间距离的增加而减弱。引力作用和电磁作用是随着距离的改变按照平方反比的规律变化,属于长程力。弱作用和强作用随着距离的增加,比平方反比的减弱还要快得多,属于短程力。按照所参与相互作用的不同,可以把已发现的粒子分为三大类:规范粒子、轻子和强子。
② 对称性及其对应的守恒定律。
对称性的研究为建立粒子物理理论提供了线索。物理规律的某种对称性对应着相应的守恒定律。在宏观物理中成立的质能守恒、角动量守恒、动量守恒和电荷守恒,在粒子物理中仍旧有效。此外,粒子运动还遵守重子数守恒、电轻子数守恒和μ轻子数守恒等守恒定律。粒子物理中还有一些在某种相互作用中受到破坏的守恒定律,如宇称守恒定律在弱相互作用下就不成立。
③ 强子的内部结构。
从本世纪50年代开始,人们意识到强子具有内部结构并得到了实验证实。1964年,盖尔曼(Murry Gell-Mann,1929—)提出强子结构的夸克模型。1974年,丁肇中(1936—)和里希特(Burton Richter,1931—)同时发现了J/ψ粒子,为夸克模型的真实性提供了有力的证据。理论上预言有六种夸克,现在已经发现了五种,第六种夸克的实验发现还有待于进一步的证实。虽然夸克在强子内部可以相当自由的运动,但即使用目前最大的加速器也没能将夸克打出来。很多人认为这是“夸克禁闭”造成的。因为夸克之间的相互作用是通过交换胶子实现的,胶子在强子内部起“粘胶”作用,有八种不同色荷的胶子以不同形式把夸克粘合在一起,在夸克之间传递相互作用。1979年,丁肇中等人在实验中证实了胶子的存在,给研究强相互作用的量子色动力学以有力的支持。
④量子场论。
波粒二象性,以及粒子的产生和消灭,是微观、高速物理中的普遍现象。在高能情况下,不可能像在非相对论情况中那样来区分粒子和场。把粒子和场统一处理并能反映粒子转化的基本理论叫做量子场论。从1927年起经过二十多年时间由狄拉克等人建立的量子电动力学是最早的量子场论。在量子电动力学中,各种粒子均用相应的量子场来描述。空间、时间中的每一点的量子场均以算符来表示,称为场算符。场算符满足正则对易关系与形式上的哈密顿方程。在薛定谔方程的基础上,加进产生与湮灭算符,叫做二次量子化。重整化方法的引入,使量子电动力学成为一个完整的描绘微观电磁相互作用的精确理论,理论和实验之间的符合达到惊人的程度。但是,量子电动力学本身在逻辑上不够自洽,其研究方法在向弱相互作用和强相互作用扩展时也遇到了难以克服的困难。
⑤规范场论。
最有可能把四种相互作用统一起来的量子场论是近年来崛起的规范场论。该理论企图在进行超对称的局部变换时,让方程中所涉及的每一种对称性都引入一种规范场,从而将包括引力在内的四种相互作用都包含在一个共同的理论框架之中,实现全面的大统一。1961年格拉肖(Sheldon Lee Glashow,1932—)提出弱相互作用和电磁相互作用统一的理论模型。1967年和1968年,温伯格(Steven Weinberg,1933—)和萨拉姆(Abdus Salam,1926—)在规范场论基础上实现了弱相互作用和电磁相互作用的统一,并为一系列实验所证明。
(5)量子统计物理。
1900年普朗克提出能量子假设,也标志着初期量子统计的开端。在经典统计方法中加进能量量子化的假设,可以成功地推导出与黑体辐射实验相符的普朗克公式,还可以推导出与实验符合得很好的固体比热公式和多原子气体比热公式。量子力学的建立改变了经典统计力学的统计方法,形成了量子统计物理。
量子统计与经典统计的区别,主要反映在以下四点:
① 由于能量的变化是不连续的,能量在相空间中的代表点不是充满各处,而仅仅存在于某一些区域中,因此经典统计中的相空间积分应当改为直接求各能级的分配数的总和;
② 由于全同粒子的不可辨别性,相同粒子的互换不能算作一个新的微观态;
③ 由于测不准关系的限制,相空间的小体积不能取得任意小;
④ 费米子由于受泡利不相容原理的限制,每一相格只容许至多一个粒子,而对于玻色子,每一相格所容许的粒子数目没有限制,因此对费米子和玻色子要用不同的方法进行统计。
用量子统计,能够精确地解释黑体辐射、金属中自由电子的比热等问题,并可导出热力学第三定律。
(6)凝聚态物理。
凝聚态物理研究凝聚态(固态与液态)物质的微观结构、物理性质及其内部运动规律。它是由固体物理学发展起来的,是现代物理学中最庞大的一个分支。它包括了固体物理学、晶体学、金属物理学、半导体物理学、超导体物理学,还包括近年来兴起的表面物理学、非晶态物理学等等。下面简单介绍一下其中的固体物理学、半导体物理学和超导体物理学。
①固体物理。
固体物理学主要的研究对象是晶态固体。19世纪,人们就已经积累了关于晶体几何结构的大量知识。20世纪初,实验和理论都为固体物理学的建立提供了坚实的基础。1912年,劳厄(Maxvon Lane,1879—1960)首先指出晶体可以作为X射线的衍射光栅,使人们通过实验观测对晶体结构有了较深入的了解。量子理论的发现,使人们能够更加深入和比较正确地描述晶体内部微观粒子的运动过程。在这个基础上,1928年布洛赫(F.BLoch,1905—)提出,晶体中原子的周期排列形成了对自由电子运动有影响的周期性势场,在这种势场中,电子占据的、彼此相隔很近的可能能级形成能带,能带间有一定的间隙,称为禁带。这个能带理论为固体提供了一个普遍适用的微观模型。固体能带论和晶格动力学使固体物理学成为一门系统的基础学科,在处理晶体性能方面获得了重大成功。例如,这些理论得出了区分导体、半导体和绝缘体的微观判据,形成了位错、晶体缺陷等方面系统的理论。
②半导体物理。
能带理论为半导体物理的发展奠定了基础。半导体是依靠导带中的电子或价带中的空穴导电的,其导电性能可通过掺入杂质原子取代原来的原子而进行控制。近年来,半导体物理的研究已经深入和扩展到半导体能带超精细结构的研究、半导体发光机制及半导体光导性质的研究等领域,表面物理也成为半导体物理学的一个重要研究内容。半导体物理的研究导致了1947年晶体管的发明和1959年集成电路的发明。当代集成电路技术与计算机技术的结合,已从根本上改变了整个工业、甚至整个社会的面貌,促进了新的世界技术革命的到来。
③超导物理。
超导体物理学研究超导现象和超导体材料的特性。当温度下降到临界温度时金属突然失去电阻的现象称为超导现象。它是1911年由昂内斯(H.K.Onnes,1853—1926)首先发现的。1933年发现了超导体的完全抗磁性,即迈斯纳效应。1958年巴丁(Jhon Bardeen,1908—)等人提出了一个超导现象的微观理论,大体上说明了超导现象的起源。1962年,人们发现了超导隧道效应,还提出了电子——声子相互作用的强耦合超导理论。目前世界各国都在加紧对高温超导材料的研究,已经研制出超导温度为摄氏零下几十度的高温超导材料。
(7)天体物理。
天体物理研究天体的物质结构以及天体的形成和演化。从20世纪30年代到60年代,逐渐形成了关于恒星的比较统一的理论。恒星的前身(星胚)是由弥漫稀薄的星际物质通过引力塌缩而凝聚成密度较大的气体和尘埃云。在塌缩过程中星胚中心密度增大、温度增高,逐渐发热发光,形成星前天体。引力收缩是星前天体的能源。当星胚核心温度升高到一千万度时,氢核聚变开始成为主要能源,这时进入主星序阶段,一个真正的恒星便形成了。据计算,恒星只用几百万年甚至几十万年就走完了星前阶段,而主星序则长达10亿年到100亿年。恒星演化的末期,将出现三类天体:白矮星、中子星和黑洞。目前,白矮星和中子星已被大量发现,黑洞的发现尚有待于进一步证实。在宇宙整体的研究方面,人们提出了宇宙膨胀理论和大爆炸理论,并且找到了一些实验证据。
(8)非平衡统计物理。
非平衡统计物理研究处于非平衡态的物质系统。经典统计力学认为,物质系统的演化是一种从有序到无序的不可逆过程。但生物界的有些现象却与此相反,如生物的进化就是从低级到高级、从无序到有序乃至高度有序发展的。这样,物理学和生物学这两种演化观就表现出尖锐的对立。这告诉我们,物理系统也应存在着从无序到有序的演化过程。1969年,普里高津(N.G.Pri- gogine,1917—)提出耗散结构理论,为寻找从无序到有序提供了新的思想。普里高津认为,处在远离平衡态的不稳定状态的开放系统,如果内部各要素间存在着非线性的相互作用,在稳定性被破坏后,可能向新的稳定状态进行,在这个过程中,可以出现有序结构(耗散结构)。1973年,哈肯(Hermann Haken,1927—)从另一角度提出了一种研究从无序到有序的理论——协同学,它是一种产生自组织有序结构和功能行为的理论。
(9)生物物理。
生物物理学用物理学的理论和实验技术研究生命现象。从20世纪30年代到50年代,一批物理学家在晶体分析技术的基础上,逐步弄清了蛋白质的基本结构。1944年,薛定谔用量子力学的观点讨论了遗传问题,他设想,基因是一种同分异构的连续体构成的非周期性晶体,在它的巨大数量的原子或原子群的排列组合中,蕴含着一种微型密码,这种密码形成遗传信息。50年代初,一些物理学家开始对遗传的物质基础DNA(脱氧核糖核酸)进行结构细节的晶体研究。1953年,物理学家克里克(F.H.C.Crick,1916—)和病毒遗传学家沃森(J.D.Watson,1928—)一起,提出了DNA双螺旋结构的分子模型,并提出DNA分子结构的遗传含义。他们认为,DNA双螺旋结构就是携带着遗传密码的基因,一个DNA分子能够复制出两个完全相同的DNA分子。在DNA如何控制蛋白质合成的进一步探究中,物理学家伽莫夫(G.Gamov,1904—1968)根据排列组合提出“三联体密码子”假说,提出共有64种遗传密码。到1969年,这64种遗传密码已全部测出并被列成密码表。遗传信息之谜的破译,是20世纪自然科学最伟大的成就之一。
现代物理学是相对于经典物理学而言。
是相对于非欧几里德空间理论而言的。

粒子物理学的发展阶段

这个阶段可追溯到英国物理学家汤姆森1897年发现第一个基本粒子电子。1932 年 J.查德威克在用a粒子轰击核的实验中发现了中子,随即人们认识到原子核是由质子和中子构成的,从而形成所有物质都是由基本的结构单元——质子 、中子、电子构成的统一的世界图像。质子、中子、电子和A.爱因斯坦提出并被 R.A.密立根和 A.H. 康普顿等人实验证实的光子、沃尔夫冈·泡利假设存在的中微子(1956年最终被实验证实)以及P.A.M.狄拉克预言并被 C.D.安德森 1932 年在宇宙线中观察到的正电子都被认为是基本粒子或亚原子粒子。
在此阶段,理论上建立了量子力学,这是微观粒子运动普遍遵从的基本规律。在相对论量子力学的基础上,通过场的量子化初步建立量子场论,很好地解决了场的粒子性和描述粒子的产生、湮没等问题。随着原子核物理的发展,发现在相当于原子核大小的范围内除了引力相互作用电磁相互作用之外,还存在比电磁作用更强的强相互作用和介于电磁作用和引力作用之间的弱相互作用,前者是核子结合成核的核力,后者引起原子核的β衰变。对于核力的研究认识到核力是通过交换介子而产生的,并根据核力的电荷无关性建立起同位旋概念。 这个阶段的开始以1937年在宇宙线中发现μ子为标志。
μ子的发现  1934年,汤川秀树为解释核子之间的强作用短程力,基于同电磁作用的对比,提出这种力是由质子和(或)中子之间交换一种具有质量(电子质量的200~300倍)的基本粒子──介子引起的。1936年,C.D.安德森和S.H.尼德迈耶在实验上确认了一种新粒子,其质量是电子质量的207倍,这就是后来被称为μ子的粒子。μ子是不稳定的粒子,它衰变成电子、一个中微子和一个反中微子,平均寿命为2×10-6秒,自旋为1/2。
汤川最初提出的介子的电荷是正的或负的。1938年,N.J.凯默基于实验上发现的核力的电荷无关性的事实,发展了稍早些时候出现的同位旋的概念,建立了核力的S?S⑵对称性理论。这个理论有两个重要的结果,一是除了带正负电的介子之外,还应当有不带电的中性介子,三种介子的质量应当相同;二是强相互作用的粒子可按同位旋分成一组组的多重态。
h介子和奇异粒子的发现  1947年,M.孔韦尔西等人用计数器统计方法发现μ子并没有强作用,直接的证明是1948年由张文裕用云室研究 μ子同金属箔直接相互作用得到的。1947年C.F.鲍威尔等人在宇宙线中利用核乳胶的方法发现了真正具有强相互作用的介子,其后,在加速器上也证实了这种介子的存在。它们的质量约是电子质量的270倍,带有正电荷或负电荷,被称为π±介子。1950年发现了不带电的π0介子。μ子后来则和电子以及中微子归于一类,被统称作轻子。
从此以后人类认识到的基本粒子的数目越来越多。就在1947年,G.罗彻斯特和C.巴特勒在宇宙线实验中发现了V粒子(即K介子),这就是后来被称为奇异粒子的一系列新粒子发现的开始。由于它们独特的性质,一种新的量子数──奇异数的概念被引进到粒子物理中。在这些奇异粒子中,有质量比质子轻的奇异介子K±、K0和 [粒子物理学] ;有质量比质子重的各种超子,包括Λ0、Σ±、Σ0、Ξ0和Ξ-等。这些新发现的粒子,都是不稳定的粒子,除h0介子外(它的寿命是10-16秒),它们的平均寿命都在10-6~10-10秒之间,所以在地球上的通常条件下,它们并不存在,在当时的情况下,只有借助从太空飞来的高能量宇宙线才能产生。
这些发现了的基本粒子,加上理论上预言其存在,但尚未得到实验证实的引力场量子──引力子,按相互作用的性质,可分成引力子、光子、轻子和强子四类。
新粒子大发现和强作用SU⑶对称性的建立为了克服宇宙线流强太弱这个限制,从50年代初开始建造能量越来越高、流强越来越大的粒子加速器。实验上也相继出现了新的强有力的探测手段如大型气泡室、火花室、多丝正比室等,开始了新粒子的大发现时期。到了60年代头几年,实验上观察到的基本粒子的数目已经增加到比当年元素周期表出现时发现的化学元素的数目还要多,而且发现的势头还有增无已。1961年,由M.盖耳-曼及Y.奈曼提出的,用强相互作用的SU⑶对称性来对强子进行分类的“八重法”。八重法分类不但给出了当时已经发现的强子在其中的位置,还准确地预言了一些新的粒子,如1964年用气泡室实验发现的 Ω-粒子。八重法很好地说明粒子的自旋、宇称、电荷、奇异数以及质量等静态性质的规律性。
在此阶段中,证实了不单电子,所有的粒子,都有它的反粒子(有的粒子的反粒子就是它自身,如h0、η等)。其中第一个带电的反超子庙-是由中国的王淦昌等在1959年发现的。此外,还发现了为数众多的寿命极短,经强作用衰变的粒子──共振态。
基本粒子大量发现,使人们怀疑这些基本粒子的基本性。基本粒子的概念,面临一个突变。这就是这个阶段终了时粒子物理在实验上的状况。
这个阶段理论上最重要的进展是量子场论和重正化理论的建立,以及相互作用中对称性质的研究。
量子场论和重正化理论的发展  上一阶段对微观世界理性认识的最大进展是量子力学的建立。经过一代物理学家的努力,量子力学能很好地解释原子结构、原子光谱的规律性、化学元素的性质、光的吸收及辐射等等现象,特别是当它同狭义相对论结合而建立相对论性量子力学以后,它已经成为微观世界在原子、分子层次上的一个基本理论。但是,量子力学还有以下几个方面的不足:①它不能反映场的粒子性;②它不能描述粒子的产生和湮没的过程;③它有负能量的解,这导致物理概念上的困难。量子场论是由P.A.M.狄喇克、E.P.约旦、E.P.维格纳、W.K.海森伯和泡利等人在相对论量子力学的基础上,通过场的量子化的途径发展出来的,它很好地解决了这三个问题。
在量子场论领域中最早发展起来的是量子电动力学,它是把电磁场(光子场)和电子场都加以量子化,从而描述电子和光子的各种现象的一种理论。40年代里,人们对这个理论中的发散困难作了深入的分析。由于J.S.施温格、朝永振一郎、R.P.费因曼和F.J.戴森等人的努力,在解决这个问题上有了突破性的进展。他们发现,如果重新定义理论中的质量和电荷,使之同实验的观测值相应,则量子电动力学中的无穷大结果不再出现。这种消除无穷大结果的方法,叫做重正化理论。它不但在原则上解决了量子电动力学中出现的发散困难,还提出了一整套按电子电荷的幂次展开的,直观的,用图形表示的逐级近似(微扰近似)的计算方法──费因曼图方法,使量子电动力学的计算有了简单可靠的、具有相对论协变性质的基础。P.库什和H.M.福里1947年发现的电子反常磁矩,和由W.E.兰姆等发现的氢原子的2^2S1/2和2^2P1/2能级的分裂,只有通过量子电动力学的重正化理论才能得到正确的解释(见 μ子和电子回磁比和兰姆移位)。今天,量子电动力学已经经受了许多实验上的验证,成为电磁相互作用的基本理论。
探索强作用的基本理论  50年代初证明了重正化的方法,也适用于强相互作用的汤川理论。但这无助于使汤川理论成为强相互作用的基本理论,因为按强作用耦合常数的幂次展开级数是不收敛的,对于弱相互作用理论则更困难。1934年由E.费密提出的弱作用理论中,虽然耦合常数小,可以作微扰展开,而且在最低阶的计算得到很好的结果,但是,在高阶修正时出现的无穷大结果不能用重新定义质量和耦合常数的方法来消除,所以它是不可重正化的。
1954年,盖耳—曼,M.L.戈德伯格和W.梯令提出强相互作用的色散关系理论。在50年代直到60年代初它有很大的发展,在强作用过程的现象分析方面,也曾得到一些好的结果,但经过十多年的研究,终于肯定色散关系不可能是强作用的基本理论,主要原因是它只包含对散射振幅的普遍要求,而缺乏强相互作用独有的特殊性的东西。因而它只能是一种唯象分析手段。
沿着这个方向发展的还有雷其极点理论等。它们在缺乏严格证明的情况下被推广于强作用的散射理论。所得到的最重要的结果是:①基本粒子的自旋和质量有明显的规律性;②随着入射能量增加,二体散射截面在小角度处的变化具有特定的模式。由于这些理论的出发点和缺点与色散关系大致相同,故它们的成就和存在的问题就同色散关系大致相仿。
相互作用中对称性理论的进展  在当时,理论上另一重大的进展是相互作用中的对称性的研究(对称性和守恒律)。如果量子场系统在一种对称变换下保持不变,则将对应着一种守恒量,例如在时空平移下不变,对应的守恒量就是能量和动量。在50年代初期,普遍认为在各种相互作用中,都有着空间反射变换p、电荷共轭变换C和时间反演变换T的不变性,与此相对应,宇称和C 宇称应该是守恒的。不过,这种观点,除了1955年由泡利在很一般的前提下,从理论上证明了CPT联合变换下量子场论的不变性以外,其他是没有从实验上或理论上被严格证明过的。
1955年,经过周密地对奇异粒子θ介子和θ介子的实验分析发现了θ-θ之谜。1956年,李政道和杨振宁了解到,在弱作用中宇称守恒事实上并没有得到过实验上的证实。他们提出,在弱作用中宇称是不守恒的,也不存在θ-θ之谜。1957年,吴健雄小组在极化原子核60 Co的 β衰变的实验中,证实了宇称不守恒。随后不久,宇称不守恒在其他的弱作用过程的实验中也得到了证实。这些实验同时也证实了在弱作用中C宇称的不守恒。
1964年,J.W.克洛宁等人在长寿命K介子的衰变实验中,发现有2π终态的衰变,从而实验又证实了尽管单独的空间反射p和单独的电荷共轭变换C的不变性在弱作用中受到破坏,但是它们的联合变换Cp的不变性也遭到破坏。随后认识到,这个实验事实上也证实了在弱作用中时间反演变换的不变性的破坏。
在弱作用中,与宇称不守恒的程度很大相反,Cp不守恒的程度是极为微弱的,其根本原因至今尚没有足够的了解。
发现大量新粒子,从而使基本粒子的基本性受到猛烈的冲击;确立了各种对称性在弱作用中的破坏和成功地提出了强子分类的SU⑶对称性;确定了量子电动力学作为微观领域中电磁相互作用的基本理论,但强作用和弱作用尚缺乏基本的理论,这就是在这个阶段终了时粒子物理学发展的概况。 以提出强子 结构的夸克模型为标志。1964 年 M.盖耳曼和 G.兹韦克在强子分类八重法的基础上分别提出强子由夸克构成,夸克共有上夸克u、下夸克d和奇异夸克s三种,它们的电荷 、重子数为分数。夸克模型可以说明当时已发现的各种强子。夸克模型得到后来进行的高能电子、高能中微子对质子和中子的深度非弹性散射实验的支持,实验显示出质子和中子内部存在点状结构,这些点状结构可以认为是夸克存在的证据。1974年发现J/ψ粒子,其独特性质必须引入一种新的粲夸克c ,1979年发现另外一种独特的新粒子Υ,必须引入第5种夸克,称为底夸克b。另一方面,1975年发现重轻子τ,并有迹象表明存在与τ相伴的τ中微子 ,于是轻子共有6种。迄今的实验尚未发现轻子有内部结构。人们相信轻子是与夸克属于同一层次的粒子。轻子与夸克的对称性意味着存在第6种顶夸克t。1994年4月26日,美国费米国家实验室宣布已找到顶夸克存在的证据。
这一阶段理论上最重要的进展是建立电弱统一理论和强相互作用研究的进展。1961 年S.L.格拉肖提出电磁作用和弱作用的统一模型 , 其基础是杨振宁和 R.L.密耳斯于1954年提出的非阿贝耳规范理论。按照这一模型,光子是传递电磁作用的粒子,传递弱作用的粒子是W±和Z0 粒子 , 但是W±、Z0是否具有静质量,理论上如何重正化问题没有解决。1967~1968年在对称性自发破缺的基础上 , S.温伯格 、A.萨拉姆发展了格拉肖的电弱统一模型,建立了电弱统一的完善理论,阐明了规范场粒子W±、Z0是可以有静质量的,理论预言它们的质量在80~100吉电子伏特(GeV) ,此外还预言存在弱中性流。1973年观察到弱中性流,1983 年发现W± 、 Z0粒子,其质量(mW≈80GeV,mZ≈90GeV)及特性同理论上期待的完全相符。关于强作用的研究 ,1973年 G.霍夫特、D.J.格罗斯等人发展了量子色动力学理论。量子色动力学与量子电动力学一样,也是一种定域规范理论。在这个理论中,夸克之间的强相互作用是由于夸克具有色荷交换色胶子而产生的 ,胶子没有静质量,但带有色荷。强相互作用具有渐近自由的性质,即夸克之间的强相互作用并不是随着它们的距离增大而减弱,而是相反;当它们相距很近而处于强子内部时,相互作用很弱,可近似地看成是自由的,从而能够说明夸克 、胶子的禁闭性质、轻子对强子深度非弹性散射的异常现象以及喷注现象等。
在粒子物理学的深层次探索活动中,粒子加速器、探测手段、数据记录和处理以及计算技术的应用不断发展,既带来粒子物理本身的进展,也促进整个科学技术的发展;粒子物理所取得的丰硕成果已经在宇宙演化的研究中起着重要的作用。

近代物理学,现代物理学都包括哪些内容

现代物理学以相对论和量子力学为基础,它的研究范围已经扩展为从基本粒子到宇宙天体的各个领域,形成了许多分支学科和边缘学科。
1.相对论
爱因斯坦(Albert Einstein,1879—1955)创建的相对论主要是时空的理论,它放弃了牛顿的绝对时间和绝对空间,建立了相对论时空观,使物理观念发生了一场根本的变革。在相对论中,局限于惯性参考系的理论称为狭义相对论,推广到一般参考系和包括引力场在内的理论称为广义相对论。
(1)狭义相对论。
1905年,爱因斯坦建立了狭义相对论。狭义相对论有两个基本假设:
① 相对性原理:所有惯性参考系都是等价的,物理规律对于所有惯性参考系都可以表述为相同形式;
② 光速不变原理:真空中的光速相对于任何惯性系沿任一方向恒为c,并与光源运动无关。
爱因斯坦从这两个假设出发,推导出两个惯性坐标系的时空变换关系即洛仑兹变换。从而彻底否定了“以太”的存在,并导出了运动刚体的“长度收缩”、运动时钟的“时间延缓”、同时的相对性及新的速度合成法则等。狭义相对论的时空观表明:第一,时间、空间和物质的运动是有密切联系的,时间和空间的特性是相对的,时间间隔和空间间隔的量度并不具有不变性,而是随物质运动状态的变化而变化的;第二,时间和空间存在着不可分割的联系,它们不能分割开来而独立存在,一切物理现象和过程都是在X、Y、Z和t的统一的四维连续区中存在着。
爱因斯坦把狭义相对论用于电动力学,证明了麦克斯韦方程组符合相对性原理,建立了相对论电动力学。在这里,电场和磁场已不再各自是一个矢量,而是一个反对称的四维张量,这个张量在不同的惯性系里按一定的规律变换。电场和磁场是这个统一的张量的不同分量,它们对于不同的惯性系表现出来的效应是不同的。在某一个惯性系中表现出的是一个纯粹的电场或磁场;在另一个惯性系中将同时表现出电场和磁场。这就是说,电磁场划分为电场部分和磁场部分,只具有相对意义,它与观察者所在的惯性系有关。
爱因斯坦还把相对论用于力学,建立了相对论力学。相对论力学能够正确地描述高速运动的规律,并且,当速度v<<c时,相对论力学能够过渡到经典力学。在相对论力学中,动量守恒和能量守恒这两条定律被统一成一条定律,给出了物体质量随速度增长的关系式以及质能关系式E=mc2,后者反映了质量与能量的等效关系。
(2)广义相对论。
从1907到1915年,爱因斯坦提出并建立了广义相对论。这个理论的出发点是引力质量和惯性质量相等这一事实,由此可以提出等效原理的假设:引力场同参照系的相当的加速度在物理上完全等价。根据广义相对论,万有引力效应是空间、时间弯曲的一种表现。空间、时间的弯曲结构,决定于物质的能量密度与动量密度在空间、时间中的分布;而空间、时间的弯曲结构,又反过来决定物体的运行轨道。爱因斯坦由广义相对论作出的谱线红移、光线弯曲、行星轨道近日点运动的预言,已经被一些实验证实。
2.量子力学
量子力学是研究微观粒子基本运动规律的理论。1923年,德布罗意(Louis de Broglie,1892—)提出物质波理论,开创了量子力学的时代。德布罗意认为,不仅光有波粒二象性,实物粒子也有波粒二象性。他还把描写物质粒子性的物理量与描写物质波动性的物理量联系起来,写出了以他的名字命名的关系式。1926年,薛定谔(1887--1961)根据德布罗意物质波思想,引入波函数,得出了量子力学的基本方程--薛定谔方程(波动方程),还进而建立了微扰理论,详细计算了散射等问题,完成了波动力学的创建工作。
差不多同时,海森伯(Werner Karl Heisenberg,1901—1976)等人从量子化条件出发建立了矩阵力学,并成功地解决了氢原子能级、斯塔克效应、氢原子在电场和磁场中能级的移动等问题。波动力学和矩阵力学是从两个不同的方面研究一个共同的问题,它们的效果是相同的,可以通过数学变换从一个理论转换为另一理论。人们把波动力学和矩阵力学合在一起,统称为量子力学。1925—1930年,狄拉克(Paul Adrien Maurice Dirac,1902—1984)对量子力学理论作了全面总结,还建立了相对论量子力学。
3.现代物理学的各个领域
(1)量子光学和现代光学。
1900年,普朗克(Max Planck,1858—1947)在解释黑体辐射时提出了能量子假说,认为各种频率的电磁波只能以一定的能量子方式从振子发射,能量子是不连续的,其大小只能是电磁波(或光)的频率与普朗克常数乘积的整数倍。1905年爱因斯坦发展了普朗克的能量子假设,把量子论贯穿到整个辐射和吸收过程中,提出了光量子(光子)理论,圆满解释了光电效应。其后的康普顿效应进一步证明了光量子理论。
量子力学的理论表明,光既具有波的性质,也具有粒子的性质,即波粒二象性。但光子不同于17世纪微粒说中的粒子,光子是和光的频率联系着的。
20世纪60年代前后,激光器的问世、全息摄影技术的应用、光纤通讯的发展、红外技术和遥感技术的出现,使光学进入现代光学的新时代,形成一些新的分支学科或边缘学科,如傅里叶光学、非线性光学、激光光谱学、集成光学等。
(2)原子物理。
1911年,卢瑟福(Ernst Rutherford,1871—1937)通过实验提出原子的有核模型,但在经典物理下,该模型同原子的稳定性发生了矛盾。1913年,玻尔(Niels Bohr,1885—1962)将量子观念引入原子系统,通过定态假设和频率假设两个假说建立了他的原子结构理论,并成功地解释了氢原子光谱规律。后来,人们又提出空间量子化的概念,研究了原子的壳层结构,发现了电子的自旋,不断修正了原子结构理论。
这种在量子力学之前形成的原子理论,是有很大局限性的,其关键在于未能用波粒二象性去考虑原子问题。在这个理论中,研究范围每扩大一步,一般都要附带进若干新的假设或某些经验公式,因此它不是一种完整的理论。只有以量子力学为基础对原子结构进行研究,才能得到原子结构的精确描述。
(3)原子核物理。
原子核物理研究原子核的特性、结构和变化。1920年以前,卢瑟福等人发现了质子,1932年查德威克(James Chadwick,1891—1974)发现中子,从此人们认识到原子核是由质子和中子构成的。此后,人们曾提出各种核模型假设来解释原子核的某些运动规律和现象。这些模型比较重要的有液滴模型、α粒子模型、费米气体模型、壳层模型、单粒子壳模型、多粒子壳模型、集体运动模型、统一模型等等。但直到目前还没有一个模型能够解释所有的实验事实,原子核结构仍然是人们正在进行探索的一个重大课题。
早在1896年,人们就发现了天然放射性现象,使传统的元素不变的观念受到巨大冲击。从1919年起,人们又实现了原子核的人工蜕变,这是实现人工核反应的重大突破。1938年,用中子轰击铀导致了核裂变的发现,根据相对论的质能关系,核裂变的质量亏损会产生巨大的能量。1942年,第一座原子反应堆在美国芝加哥大学建成并开始运转,开始了人类利用原子能的新纪元。1952年以后,人们又实现了轻核聚变,产生了比裂变大得多的能量。
(4)粒子物理。
目前实验上所能探测到的物质结构最深层次的研究,称为粒子物理学,也称为高能物理学。1932年安德森(Carl Darid Ander-son,1905—)在宇宙射线中发现了正电子,标志着粒子物理学的诞生。随后逐步发现了一系列新的粒子。早期发现的粒子,都是来自宇宙射线,50年代以后,由于各种加速器相继问世,大批粒子不断地被发现。到目前为止,已经发现的粒子有几百种之多,而且看来还会不断有新的发现。
①粒子之间的四种相互作用。
粒子之间存在着复杂的相互作用,能够产生和消灭。粒子之间有四种相互作用:引力相互作用、弱相互作用、电磁相互作用和强相互作用。四种相互作用都是随着粒子之间距离的增加而减弱。引力作用和电磁作用是随着距离的改变按照平方反比的规律变化,属于长程力。弱作用和强作用随着距离的增加,比平方反比的减弱还要快得多,属于短程力。按照所参与相互作用的不同,可以把已发现的粒子分为三大类:规范粒子、轻子和强子。
② 对称性及其对应的守恒定律。
对称性的研究为建立粒子物理理论提供了线索。物理规律的某种对称性对应着相应的守恒定律。在宏观物理中成立的质能守恒、角动量守恒、动量守恒和电荷守恒,在粒子物理中仍旧有效。此外,粒子运动还遵守重子数守恒、电轻子数守恒和μ轻子数守恒等守恒定律。粒子物理中还有一些在某种相互作用中受到破坏的守恒定律,如宇称守恒定律在弱相互作用下就不成立。
③ 强子的内部结构。
从本世纪50年代开始,人们意识到强子具有内部结构并得到了实验证实。1964年,盖尔曼(Murry Gell-Mann,1929—)提出强子结构的夸克模型。1974年,丁肇中(1936—)和里希特(Burton Richter,1931—)同时发现了J/ψ粒子,为夸克模型的真实性提供了有力的证据。理论上预言有六种夸克,现在已经发现了五种,第六种夸克的实验发现还有待于进一步的证实。虽然夸克在强子内部可以相当自由的运动,但即使用目前最大的加速器也没能将夸克打出来。很多人认为这是“夸克禁闭”造成的。因为夸克之间的相互作用是通过交换胶子实现的,胶子在强子内部起“粘胶”作用,有八种不同色荷的胶子以不同形式把夸克粘合在一起,在夸克之间传递相互作用。1979年,丁肇中等人在实验中证实了胶子的存在,给研究强相互作用的量子色动力学以有力的支持。
④量子场论。
波粒二象性,以及粒子的产生和消灭,是微观、高速物理中的普遍现象。在高能情况下,不可能像在非相对论情况中那样来区分粒子和场。把粒子和场统一处理并能反映粒子转化的基本理论叫做量子场论。从1927年起经过二十多年时间由狄拉克等人建立的量子电动力学是最早的量子场论。在量子电动力学中,各种粒子均用相应的量子场来描述。空间、时间中的每一点的量子场均以算符来表示,称为场算符。场算符满足正则对易关系与形式上的哈密顿方程。在薛定谔方程的基础上,加进产生与湮灭算符,叫做二次量子化。重整化方法的引入,使量子电动力学成为一个完整的描绘微观电磁相互作用的精确理论,理论和实验之间的符合达到惊人的程度。但是,量子电动力学本身在逻辑上不够自洽,其研究方法在向弱相互作用和强相互作用扩展时也遇到了难以克服的困难。
⑤规范场论。
最有可能把四种相互作用统一起来的量子场论是近年来崛起的规范场论。该理论企图在进行超对称的局部变换时,让方程中所涉及的每一种对称性都引入一种规范场,从而将包括引力在内的四种相互作用都包含在一个共同的理论框架之中,实现全面的大统一。1961年格拉肖(Sheldon Lee Glashow,1932—)提出弱相互作用和电磁相互作用统一的理论模型。1967年和1968年,温伯格(Steven Weinberg,1933—)和萨拉姆(Abdus Salam,1926—)在规范场论基础上实现了弱相互作用和电磁相互作用的统一,并为一系列实验所证明。
(5)量子统计物理。
1900年普朗克提出能量子假设,也标志着初期量子统计的开端。在经典统计方法中加进能量量子化的假设,可以成功地推导出与黑体辐射实验相符的普朗克公式,还可以推导出与实验符合得很好的固体比热公式和多原子气体比热公式。量子力学的建立改变了经典统计力学的统计方法,形成了量子统计物理。
量子统计与经典统计的区别,主要反映在以下四点:
① 由于能量的变化是不连续的,能量在相空间中的代表点不是充满各处,而仅仅存在于某一些区域中,因此经典统计中的相空间积分应当改为直接求各能级的分配数的总和;
② 由于全同粒子的不可辨别性,相同粒子的互换不能算作一个新的微观态;
③ 由于测不准关系的限制,相空间的小体积不能取得任意小;
④ 费米子由于受泡利不相容原理的限制,每一相格只容许至多一个粒子,而对于玻色子,每一相格所容许的粒子数目没有限制,因此对费米子和玻色子要用不同的方法进行统计。
用量子统计,能够精确地解释黑体辐射、金属中自由电子的比热等问题,并可导出热力学第三定律。
(6)凝聚态物理。
凝聚态物理研究凝聚态(固态与液态)物质的微观结构、物理性质及其内部运动规律。它是由固体物理学发展起来的,是现代物理学中最庞大的一个分支。它包括了固体物理学、晶体学、金属物理学、半导体物理学、超导体物理学,还包括近年来兴起的表面物理学、非晶态物理学等等。下面简单介绍一下其中的固体物理学、半导体物理学和超导体物理学。
①固体物理。
固体物理学主要的研究对象是晶态固体。19世纪,人们就已经积累了关于晶体几何结构的大量知识。20世纪初,实验和理论都为固体物理学的建立提供了坚实的基础。1912年,劳厄(Maxvon Lane,1879—1960)首先指出晶体可以作为X射线的衍射光栅,使人们通过实验观测对晶体结构有了较深入的了解。量子理论的发现,使人们能够更加深入和比较正确地描述晶体内部微观粒子的运动过程。在这个基础上,1928年布洛赫(F.BLoch,1905—)提出,晶体中原子的周期排列形成了对自由电子运动有影响的周期性势场,在这种势场中,电子占据的、彼此相隔很近的可能能级形成能带,能带间有一定的间隙,称为禁带。这个能带理论为固体提供了一个普遍适用的微观模型。固体能带论和晶格动力学使固体物理学成为一门系统的基础学科,在处理晶体性能方面获得了重大成功。例如,这些理论得出了区分导体、半导体和绝缘体的微观判据,形成了位错、晶体缺陷等方面系统的理论。
②半导体物理。
能带理论为半导体物理的发展奠定了基础。半导体是依靠导带中的电子或价带中的空穴导电的,其导电性能可通过掺入杂质原子取代原来的原子而进行控制。近年来,半导体物理的研究已经深入和扩展到半导体能带超精细结构的研究、半导体发光机制及半导体光导性质的研究等领域,表面物理也成为半导体物理学的一个重要研究内容。半导体物理的研究导致了1947年晶体管的发明和1959年集成电路的发明。当代集成电路技术与计算机技术的结合,已从根本上改变了整个工业、甚至整个社会的面貌,促进了新的世界技术革命的到来。
③超导物理。
超导体物理学研究超导现象和超导体材料的特性。当温度下降到临界温度时金属突然失去电阻的现象称为超导现象。它是1911年由昂内斯(H.K.Onnes,1853—1926)首先发现的。1933年发现了超导体的完全抗磁性,即迈斯纳效应。1958年巴丁(Jhon Bardeen,1908—)等人提出了一个超导现象的微观理论,大体上说明了超导现象的起源。1962年,人们发现了超导隧道效应,还提出了电子——声子相互作用的强耦合超导理论。目前世界各国都在加紧对高温超导材料的研究,已经研制出超导温度为摄氏零下几十度的高温超导材料。
(7)天体物理。
天体物理研究天体的物质结构以及天体的形成和演化。从20世纪30年代到60年代,逐渐形成了关于恒星的比较统一的理论。恒星的前身(星胚)是由弥漫稀薄的星际物质通过引力塌缩而凝聚成密度较大的气体和尘埃云。在塌缩过程中星胚中心密度增大、温度增高,逐渐发热发光,形成星前天体。引力收缩是星前天体的能源。当星胚核心温度升高到一千万度时,氢核聚变开始成为主要能源,这时进入主星序阶段,一个真正的恒星便形成了。据计算,恒星只用几百万年甚至几十万年就走完了星前阶段,而主星序则长达10亿年到100亿年。恒星演化的末期,将出现三类天体:白矮星、中子星和黑洞。目前,白矮星和中子星已被大量发现,黑洞的发现尚有待于进一步证实。在宇宙整体的研究方面,人们提出了宇宙膨胀理论和大爆炸理论,并且找到了一些实验证据。
(8)非平衡统计物理。
非平衡统计物理研究处于非平衡态的物质系统。经典统计力学认为,物质系统的演化是一种从有序到无序的不可逆过程。但生物界的有些现象却与此相反,如生物的进化就是从低级到高级、从无序到有序乃至高度有序发展的。这样,物理学和生物学这两种演化观就表现出尖锐的对立。这告诉我们,物理系统也应存在着从无序到有序的演化过程。1969年,普里高津(N.G.Pri- gogine,1917—)提出耗散结构理论,为寻找从无序到有序提供了新的思想。普里高津认为,处在远离平衡态的不稳定状态的开放系统,如果内部各要素间存在着非线性的相互作用,在稳定性被破坏后,可能向新的稳定状态进行,在这个过程中,可以出现有序结构(耗散结构)。1973年,哈肯(Hermann Haken,1927—)从另一角度提出了一种研究从无序到有序的理论——协同学,它是一种产生自组织有序结构和功能行为的理论。
(9)生物物理。
生物物理学用物理学的理论和实验技术研究生命现象。从20世纪30年代到50年代,一批物理学家在晶体分析技术的基础上,逐步弄清了蛋白质的基本结构。1944年,薛定谔用量子力学的观点讨论了遗传问题,他设想,基因是一种同分异构的连续体构成的非周期性晶体,在它的巨大数量的原子或原子群的排列组合中,蕴含着一种微型密码,这种密码形成遗传信息。50年代初,一些物理学家开始对遗传的物质基础DNA(脱氧核糖核酸)进行结构细节的晶体研究。1953年,物理学家克里克(F.H.C.Crick,1916—)和病毒遗传学家沃森(J.D.Watson,1928—)一起,提出了DNA双螺旋结构的分子模型,并提出DNA分子结构的遗传含义。他们认为,DNA双螺旋结构就是携带着遗传密码的基因,一个DNA分子能够复制出两个完全相同的DNA分子。在DNA如何控制蛋白质合成的进一步探究中,物理学家伽莫夫(G.Gamov,1904—1968)根据排列组合提出“三联体密码子”假说,提出共有64种遗传密码。到1969年,这64种遗传密码已全部测出并被列成密码表。遗传信息之谜的破译,是20世纪自然科学最伟大的成就之一。

量子物理学的思想是什么?

我们把科学家们在研究原子、分子、原子核、基本粒子时所观察到的关于微观世界的系列特殊的物理现象称为量子现象。
  量子世界除了其线度极其微小之外(10-10~10-15m量级),另一个主要特征是它们所涉及的许多宏观世界所对应的物理量往往不能取连续变化的值,(如:坐标、动量、能量、角动量、自旋),甚至取值不确定。许多实验事实表明,量子世界满足的物理规律不再是经典的牛顿力学,而是量子物理学。量子物理学是当今人们研究微观世界的理论,也有人称为研究量子现象的物理学。
  由于宏观物体是由微观世界建构而成的,因此量子物理学不仅是研究微观世界结构的工具,而且在深入研究宏观物体的微结构和特殊的物理性质中也发挥着巨大作用。
尽管量子力学是为描述远离我们的日常生活经验的抽象原子世界而创立的,但它对日常生活的影响无比巨大。没有量子力学作为工具,就不可能有化学、生物、医学以及其他每一个关键学科的引人入胜的进展。没有量子力学就没有全球经济可言,因为作为量子力学的产物的电子学革命将我们带入了计算机时代。同时,光子学的革命也将我们带入信息时代。量子物理的杰作改变了我们的世界,科学革命为这个世界带来了的福音,也带来了潜在的威胁。

或许用下面的一段资料能最好地描述这个至关重要但又难以捉摸的理论的独特地位:量子理论是科学史上能最精确地被实验检验的理论,是科学史上最成功的理论。量子力学深深地困扰了它的创立者,然而,直到它本质上被表述成通用形式的今天,一些科学界的精英们尽管承认它强大的威力,却仍然对它的基础和基本阐释不满意。

马克斯·普朗克(Max Planck)提出量子概念100多年了,在他关于热辐射的经典论文中,普朗克假定振动系统的总能量不能连续改变,而是以不连续的能量子形式从一个值跳到另一个值。能量子的概念太激进了,普朗克后来将它搁置下来。随后,爱因斯坦在1905年(这一年对他来说是非凡的一年)认识到光量子化的潜在意义。不过量子的观念太离奇了,后来几乎没有根本性的进展。现代量子理论的创立则是崭新的一代物理学家花了20多年时间建立的。

量子物理实际上包含两个方面。一个是原子层次的物质理论:量子力学,正是它我们才能理解和操纵物质世界;另一个是量子场论,它在科学中起到一个完全不同的作用。

旧量子论

量子革命的导火线不是对物质的研究,而是辐射问题。具体的挑战是理解黑体(即某种热的物体)辐射的光谱。烤过火的人都很熟悉这样一种现象:热的物体发光,越热发出的光越明亮。光谱的范围很广,当温度升高时,光谱的峰值从红线向黄线移动,然后又向蓝线移动(这些不是我们能直接看见的)。

结合热力学和电磁学的概念似乎可以对光谱的形状作出解释,不过所有的尝试均以失败告终。然而,普朗克假定振动电子辐射的光的能量是量子化的,从而得到一个表达式,与实验符合得相当完美。但是他也充分认识到,理论本身是很荒唐的,就像他后来所说的那样:“量子化只不过是一个走投无路的做法”。

普朗克将他的量子假设应用到辐射体表面振子的能量上,如果没有新秀阿尔伯特·爱因斯坦(Albert Einstein),量子物理恐怕要至此结束。1905年,他毫不犹豫的断定:如果振子的能量是量子化的,那么产生光的电磁场的能量也应该是量子化的。尽管麦克斯韦理论以及一个多世纪的权威性实验都表明光具有波动性,爱因斯坦的理论还是蕴含了光的粒子性行为。随后十多年的光电效应实验显示仅当光的能量到达一些离散的量值时才能被吸收,这些能量就像是被一个个粒子携带着一样。光的波粒二象性取决于你观察问题的着眼点,这是始终贯穿于量子物理且令人头痛的实例之一,它成为接下来20年中理论上的难题。

辐射难题促成了通往量子理论的第一步,物质悖论则促成了第二步。众所周知,原子包含正负两种电荷的粒子,异号电荷相互吸引。根据电磁理论,正负电荷彼此将螺旋式的靠近,辐射出光谱范围宽广的光,直到原子坍塌为止。

接着,又是一个新秀尼尔斯·玻尔(Niels Bohr)迈出了决定性的一步。1913年,玻尔提出了一个激进的假设:原子中的电子只能处于包含基态在内的定态上,电子在两个定态之间跃迁而改变它的能量,同时辐射出一定波长的光,光的波长取决于定态之间的能量差。结合已知的定律和这一离奇的假设,玻尔扫清了原子稳定性的问题。玻尔的理论充满了矛盾,但是为氢原子光谱提供了定量的描述。他认识到他的模型的成功之处和缺陷。凭借惊人的预见力,他聚集了一批物理学家创立了新的物理学。一代年轻的物理学家花了12年时间终于实现了他的梦想。

开始时,发展玻尔量子论(习惯上称为旧量子论)的尝试遭受了一次又一次的失败。接着一系列的进展完全改变了思想的进程。

量子力学史

1923年路易·德布罗意(Louis de Broglie)在他的博士论文中提出光的粒子行为与粒子的波动行为应该是对应存在的。他将粒子的波长和动量联系起来:动量越大,波长越短。这是一个引人入胜的想法,但没有人知道粒子的波动性意味着什么,也不知道它与原子结构有何联系。然而德布罗意的假设是一个重要的前奏,很多事情就要发生了。

1924年夏天,出现了又一个前奏。萨地扬德拉·N·玻色(Satyendra N. Bose)提出了一种全新的方法来解释普朗克辐射定律。他把光看作一种无(静)质量的粒子(现称为光子)组成的气体,这种气体不遵循经典的玻耳兹曼统计规律,而遵循一种建立在粒子不可区分的性质(即全同性)上的一种新的统计理论。爱因斯坦立即将玻色的推理应用于实际的有质量的气体从而得到一种描述气体中粒子数关于能量的分布规律,即著名的玻色-爱因斯坦分布。然而,在通常情况下新老理论将预测到原子气体相同的行为。爱因斯坦在这方面再无兴趣,因此这些结果也被搁置了10多年。然而,它的关键思想——粒子的全同性,是极其重要的。

突然,一系列事件纷至沓来,最后导致一场科学革命。从1925年元月到1928年元月:

·沃尔夫刚·泡利(Wolfgang Pauli)提出了不相容原理,为周期表奠定了理论基础。

·韦纳·海森堡(Werner Heisenberg)、马克斯·玻恩(Max Born)和帕斯库尔·约当(Pascual Jordan)提出了量子力学的第一个版本,矩阵力学。人们终于放弃了通过系统的方法整理可观察的光谱线来理解原子中电子的运动这一历史目标。

·埃尔温·薛定谔(Erwin Schrodinger)提出了量子力学的第二种形式,波动力学。在波动力学中,体系的状态用薛定谔方程的解——波函数来描述。矩阵力学和波动力学貌似矛盾,实质上是等价的。

·电子被证明遵循一种新的统计规律,费米-狄拉克统计。人们进一步认识到所有的粒子要么遵循费米-狄拉克统计,要么遵循玻色-爱因斯坦统计,这两类粒子的基本属性很不相同。

·海森堡阐明测不准原理。

·保尔·A·M·狄拉克(Paul A. M. Dirac)提出了相对论性的波动方程用来描述电子,解释了电子的自旋并且预测了反物质。

·狄拉克提出电磁场的量子描述,建立了量子场论的基础。

·玻尔提出互补原理(一个哲学原理),试图解释量子理论中一些明显的矛盾,特别是波粒二象性。

量子理论的主要创立者都是年轻人。1925年,泡利25岁,海森堡和恩里克·费米(Enrico Fermi)24岁,狄拉克和约当23岁。薛定谔是一个大器晚成者,36岁。玻恩和玻尔年龄稍大一些,值得一提的是他们的贡献大多是阐释性的。爱因斯坦的反应反衬出量子力学这一智力成果深刻而激进的属性:他拒绝自己发明的导致量子理论的许多关键的观念,他关于玻色-爱因斯坦统计的论文是他对理论物理的最后一项贡献,也是对物理学的最后一项重要贡献。

创立量子力学需要新一代物理学家并不令人惊讶,开尔文爵士在祝贺玻尔1913年关于氢原子的论文的一封书信中表述了其中的原因。他说,玻尔的论文中有很多真理是他所不能理解的。开尔文认为基本的新物理学必将出自无拘无束的头脑。

1928年,革命结束,量子力学的基础本质上已经建立好了。后来,Abraham Pais以轶事的方式记录了这场以狂热的节奏发生的革命。其中有一段是这样的:1925年,Samuel Goudsmit和George Uhlenbeck就提出了电子自旋的概念,玻尔对此深表怀疑。10月玻尔乘火车前往荷兰的莱顿参加亨德里克·A·洛伦兹(Hendrik A. Lorentz)的50岁生日庆典,泡利在德国的汉堡碰到玻尔并探询玻尔对电子自旋可能性的看法;玻尔用他那著名的低调评价的语言回答说,自旋这一提议是“非常,非常有趣的”。后来,爱因斯坦和Paul Ehrenfest在莱顿碰到了玻尔并讨论了自旋。玻尔说明了自己的反对意见,但是爱因斯坦展示了自旋的一种方式并使玻尔成为自旋的支持者。在玻尔的返程中,遇到了更多的讨论者。当火车经过德国的哥挺根时,海森堡和约当接站并询问他的意见,泡利也特意从汉堡格赶到柏林接站。玻尔告诉他们自旋的发现是一重大进步。

量子力学的创建触发了科学的淘金热。早期的成果有:1927年海森堡得到了氦原子薛定谔方程的近似解,建立了原子结构理论的基础;John Slater,Douglas Rayner Hartree,和Vladimir Fock随后又提出了原子结构的一般计算技巧;Fritz London和Walter Heitler解决了氢分子的结构,在此基础上,Linus Pauling建立了理论化学;Arnold Sommerfeld和泡利建立了金属电子理论的基础,Felix Bloch创立了能带结构理论;海森堡解释了铁磁性的起因。1928年George Gamow解释了α放射性衰变的随机本性之谜,他表明α衰变是由量子力学的隧道效应引起的。随后几年中,Hans Bethe建立了核物理的基础并解释了恒星的能量来源。随着这些进展,原子物理、分子物理、固体物理和核物理进入了现代物理的时代。

量子力学要点

伴随着这些进展,围绕量子力学的阐释和正确性发生了许多争论。玻尔和海森堡是倡导者的重要成员,他们信奉新理论,爱因斯坦和薛定谔则对新理论不满意。

基本描述:波函数。系统的行为用薛定谔方程描述,方程的解称为波函数。系统的完整信息用它的波函数表述,通过波函数可以计算任意可观察量的可能值。在空间给定体积内找到一个电子的概率正比于波函数幅值的平方,因此,粒子的位置分布在波函数所在的体积内。粒子的动量依赖于波函数的斜率,波函数越陡,动量越大。斜率是变化的,因此动量也是分布的。这样,有必要放弃位移和速度能确定到任意精度的经典图象,而采纳一种模糊的概率图象,这也是量子力学的核心。

对于同样一些系统进行同样精心的测量不一定产生同一结果,相反,结果分散在波函数描述的范围内,因此,电子特定的位置和动量没有意义。这可由测不准原理表述如下:要使粒子位置测得精确,波函数必须是尖峰型的,然而,尖峰必有很陡的斜率,因此动量就分布在很大的范围内;相反,若动量有很小的分布,波函数的斜率必很小,因而波函数分布于大范围内,这样粒子的位置就更加不确定了。

波的干涉。波相加还是相减取决于它们的相位,振幅同相时相加,反相时相减。当波沿着几条路径从波源到达接收器,比如光的双缝干涉,一般会产生干涉图样。粒子遵循波动方程,必有类似的行为,如电子衍射。至此,类推似乎是合理的,除非要考察波的本性。波通常认为是媒质中的一种扰动,然而量子力学中没有媒质,从某中意义上说根本就没有波,波函数本质上只是我们对系统信息的一种陈述。

对称性和全同性。氦原子由两个电子围绕一个核运动而构成。氦原子的波函数描述了每一个电子的位置,然而没有办法区分哪个电子究竟是哪个电子,因此,电子交换后看不出体系有何变化,也就是说在给定位置找到电子的概率不变。由于概率依赖于波函数的幅值的平方,因而粒子交换后体系的波函数与原始波函数的关系只可能是下面的一种:要么与原波函数相同,要么改变符号,即乘以-1。到底取谁呢?

量子力学令人惊诧的一个发现是电子的波函数对于电子交换变号。其结果是戏剧性的,两个电子处于相同的量子态,其波函数相反,因此总波函数为零,也就是说两个电子处于同一状态的概率为0,此即泡利不相容原理。所有半整数自旋的粒子(包括电子)都遵循这一原理,并称为费米子。自旋为整数的粒子(包括光子)的波函数对于交换不变号,称为玻色子。电子是费米子,因而在原子中分层排列;光由玻色子组成,所以激光光线呈现超强度的光束(本质上是一个量子态)。最近,气体原子被冷却到量子状态而形成玻色-爱因斯坦凝聚,这时体系可发射超强物质束,形成原子激光。

这一观念仅对全同粒子适用,因为不同粒子交换后波函数显然不同。因此仅当粒子体系是全同粒子时才显示出玻色子或费米子的行为。同样的粒子是绝对相同的,这是量子力学最神秘的侧面之一,量子场论的成就将对此作出解释。

争议与混乱

量子力学意味着什么?波函数到底是什么?测量是什么意思?这些问题在早期都激烈争论过。直到1930年,玻尔和他的同事或多或少地提出了量子力学的标准阐释,即哥本哈根阐释;其关键要点是通过玻尔的互补原理对物质和事件进行概率描述,调和物质波粒二象性的矛盾。爱因斯坦不接受量子理论,他一直就量子力学的基本原理同玻尔争论,直至1955年去世。

关于量子力学争论的焦点是:究竟是波函数包含了体系的所有信息,还是有隐含的因素(隐变量)决定了特定测量的结果。60年代中期约翰·S·贝尔(John S. Bell)证明,如果存在隐变量,那么实验观察到的概率应该在一个特定的界限之下,此即贝尔不等式。多数小组的实验结果与贝尔不等式相悖,他们的数据断然否定了隐变量存在的可能性。这样,大多数科学家对量子力学的正确性不再怀疑了。

然而,由于量子理论神奇的魔力,它的本质仍然吸引着人们的注意力。量子体系的古怪性质起因于所谓的纠缠态,简单说来,量子体系(如原子)不仅能处于一系列的定态,也可以处于它们的叠加态。测量处于叠加态原子的某种性质(如能量),一般说来,有时得到这一个值,有时得到另一个值。至此还没有出现任何古怪。

但是可以构造处于纠缠态的双原子体系,使得两个原子共有相同的性质。当这两个原子分开后,一个原子的信息被另一个共享(或者说是纠缠)。这一行为只有量子力学的语言才能解释。这个效应太不可思议以至于只有少数活跃的理论和实验机构在集中精力研究它,论题并不限于原理的研究,而是纠缠态的用途;纠缠态已经应用于量子信息系统,也成为量子计算机的基础。

二次革命

在20年代中期创立量子力学的狂热年代里,也在进行着另一场革命,量子物理的另一个分支——量子场论的基础正在建立。不像量子力学的创立那样如暴风疾雨般一挥而就,量子场论的创立经历了一段曲折的历史,一直延续到今天。尽管量子场论是困难的,但它的预测精度是所有物理学科中最为精确的,同时,它也为一些重要的理论领域的探索提供了范例。

激发提出量子场论的问题是电子从激发态跃迁到基态时原子怎样辐射光。1916年,爱因斯坦研究了这一过程,并称其为自发辐射,但他无法计算自发辐射系数。解决这个问题需要发展电磁场(即光)的相对论量子理论。量子力学是解释物质的理论,而量子场论正如其名,是研究场的理论,不仅是电磁场,还有后来发现的其它场。

1925年,玻恩,海森堡和约当发表了光的量子场论的初步想法,但关键的一步是年轻且本不知名的物理学家狄拉克于1926年独自提出的场论。狄拉克的理论有很多缺陷:难以克服的计算复杂性,预测出无限大量,并且显然和对应原理矛盾。

40年代晚期,量子场论出现了新的进展,理查德·费曼(Richard Feynman),朱利安·施温格(Julian Schwinger)和朝永振一郎(Sinitiro Tomonaga)提出了量子电动力学(缩写为QED)。他们通过重整化的办法回避无穷大量,其本质是通过减掉一个无穷大量来得到有限的结果。由于方程复杂,无法找到精确解,所以通常用级数来得到近似解,不过级数项越来越难算。虽然级数项依次减小,但是总结果在某项后开始增大,以至于近似过程失败。尽管存在这一危险,QED仍被列入物理学史上最成功的理论之一,用它预测电子和磁场的作用强度与实验可靠值仅差2/1,000,000,000,000。

尽管QED取得了超凡的成功,它仍然充满谜团。对于虚空空间(真空),理论似乎提供了荒谬的看法,它表明真空不空,它到处充斥着小的电磁涨落。这些小的涨落是解释自发辐射的关键,并且,它们使原子能量和诸如电子等粒子的性质产生可测量的变化。虽然QED是古怪的,但其有效性是为许多已有的最精确的实验所证实的。

对于我们周围的低能世界,量子力学已足够精确,但对于高能世界,相对论效应作用显著,需要更全面的处理办法,量子场论的创立调和了量子力学和狭义相对论的矛盾。

量子场论的杰出作用体现在它解释了与物质本质相关的一些最深刻的问题。它解释了为什么存在玻色子和费米子这两类基本粒子,它们的性质与内禀自旋有何关系;它能描述粒子(包括光子,电子,正电子即反电子)是怎样产生和湮灭的;它解释了量子力学中神秘的全同性,全同粒子是绝对相同的是因为它们来自于相同的基本场;它不仅解释了电子,还解释了μ子,τ子及其反粒子等轻子。

QED是一个关于轻子的理论,它不能描述被称为强子的复杂粒子,它们包括质子、中子和大量的介子。对于强子,提出了一个比QED更一般的理论,称为量子色动力学(QCD)。QED和QCD之间存在很多类似:电子是原子的组成要素,夸克是强子的组成要素;在QED中,光子是传递带电粒子之间作用的媒介,在QCD中,胶子是传递夸克之间作用的媒介。尽管QED和QCD之间存在很多对应点,它们仍有重大的区别。与轻子和光子不同,夸克和胶子永远被幽禁在强子内部,它们不能被解放出来孤立存在。

QED和QCD构成了大统一的标准模型的基石。标准模型成功地解释了现今所有的粒子实验,然而许多物理学家认为它是不完备的,因为粒子的质量,电荷以及其它属性的数据还要来自实验;一个理想的理论应该能给出这一切。

今天,寻求对物质终极本性的理解成为重大科研的焦点,使人不自觉地想起创造量子力学那段狂热的奇迹般的日子,其成果的影响将更加深远。现在必须努力寻求引力的量子描述,半个世纪的努力表明,QED的杰作——电磁场的量子化程序对于引力场失效。问题是严重的,因为如果广义相对论和量子力学都成立的话,它们对于同一事件必须提供本质上相容的描述。在我们周围世界中不会有任何矛盾,因为引力相对于电力来说是如此之弱以至于其量子效应可以忽略,经典描述足够完美;但对于黑洞这样引力非常强的体系,我们没有可靠的办法预测其量子行为。

一个世纪以前,我们所理解的物理世界是经验性的;20世纪,量子力学给我们提供了一个物质和场的理论,它改变了我们的世界;展望21世纪,量子力学将继续为所有的科学提供基本的观念和重要的工具。我们作这样自信的预测是因为量子力学为我们周围的世界提供了精确的完整的理论;然而,今日物理学与1900年的物理学有很大的共同点:它仍旧保留了基本的经验性,我们不能彻底预测组成物质的基本要素的属性,仍然需要测量它们。

或许,超弦理论是唯一被认为可以解释这一谜团的理论,它是量子场论的推广,通过有长度的物体取代诸如电子的点状物体来消除所有的无穷大量。无论结果何如,从科学的黎明时期就开始的对自然的终极理解之梦将继续成为新知识的推动力。从现在开始的一个世纪,不断地追寻这个梦,其结果将使我们所有的想象成为现实。
能量量子化,能级量子化,跃迁量子化,辐射光子量子化。
摆脱宏观思维束缚,微观创新。
学好
文章标题: 物理学中的守恒量来自于对称性,电荷来自于量子场相位的对称性,那色荷是来自于场的什么对称性
文章地址: http://www.xdqxjxc.cn/jingdianwenzhang/100335.html
文章标签:对称性  来自于  电荷  守恒  相位
Top