欢迎访问喜蛋文章网
你的位置:首页 > 经典文章 > 文章正文

有大神可以科普一下孟德尔吗

时间: 2023-07-07 01:00:49 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 100次

有大神可以科普一下孟德尔吗

谁能系统的讲解一下孟德尔遗传定律的有关计算?

任何一门学科的形成与发展,总是同当时热中于这门科学研究的杰出人物紧密相关,遗传学的形成与发展也不例外,孟德尔就是遗传学杰出的奠基人。他揭示出遗传学的两个基本定律——分离定律和自由组合定律,统称为孟德尔遗传规律。以下是相关试题及讲解一、选择题1、(2021·福建惠安高中高三第三次月考)下列属于相对性状的是 DA.兔的褐毛与长毛 B.人的身高与体重 C.小麦的高秆与大麦的矮秆 D.鸡的毛腿与光腿2、(2021·福建龙岩一中高三第三次月考)无尾猫是一种观赏猫。猫的无尾、有尾是一对相对性状,按基因的分离定律遗传。为了选育纯种的无尾猫,让无尾猫自交多代,但发现每一代中总会出现约1/3的有尾猫,其余均为无尾猫。由此推断正确的是 CA.猫的有尾性状是由显性基因控制的 B.自交后代出现有尾猫是基因突变所致 C.自交后代无尾猫中既有杂合子又有纯合子 D.无尾猫与有尾猫杂交后代中无尾猫约占1/23、(2021·江苏仪征市高三期中)假说—演绎法是现代科学研究中常用的方法,包括“提出问题、作出假设、演绎推理、检验推理、得出结论”五个基本环节。利用该方法,孟德尔发现了两个遗传规律。下列关于孟德尔的研究过程的分析正确的是 C A. 孟德尔所作假设的核心内容是“性状是由位于染色体上的基因控制的” B. 孟德尔依据减数分裂的相关原理进行“演绎推理”的过程C. 为了验证作出的假设是否正确,孟德尔设计并完成了测交实验D. 测交后代性状比为1:1可以从细胞水平上说明基因分离定律的实质 4、(2021·吉林省东北师大附中高三第二次摸底考试)蜜蜂的体色褐色相对于黑色为显性,如果用褐色雄蜂与黑色雌蜂杂交,则F1的体色将是: DA. 全部是褐色 B. 雌蜂都是黑色,雄蜂都是褐色C. 褐色∶黑色=3∶1 D. 雌蜂都是褐色,雄蜂都是黑色7、(2021·福建泉州七中高三第二次月考上)南瓜果实的黄色和白色是由一对等位基因(A和a)控制的,用一株黄色果实南瓜和一株白色果实南瓜杂交,子代(F1)既有黄色果实南瓜也有白色果实南瓜,让F1自交产生的F2的表现型如图所示。下列说法正确的是 ( C )A.由①②可知黄果是显性性状 B.由③可以判定白果是隐性性状 C.F2中,黄果与白果的理论比例是5∶3 D.F1中白果的基因型是AA 8、(2021·福建惠安高中高三第三次月考)一对杂合黑色豚鼠交配,产下了4只小豚鼠,这4只小豚鼠的表现型应是 ( D )A.全都是黑色的 B.3只黑色的、1只白色的 C.黑色、白色各两只 D.以上可能性都有 9、(2021·福建惠安一中高三第二次月考)在豚鼠中,黑色(C)对白色(c)、毛皮粗糙(R)对毛皮光滑(r)是显性。能验证基因的自由组合定律的最佳杂交组合是 D A.黑光×白光→18黑光∶16白光� B.黑光×白粗→25黑粗�C.黑粗×白粗→15黑粗∶7黑光∶16白粗∶3白光�D.黑粗×白光→10黑粗∶9黑光∶8白粗∶11白光10、(2021·福建泉州七中高三第二次月考上)孟德尔在对一对相对性状进行研究的过程中,发现了基因的分离定律。下列有关基因分离定律的几组比例,能说明基因分离定律实质的是( ) A. F2的表现型比为3∶1 B. F1产生配子的比为1∶1 C. F2基因型的比为1∶2∶1 D. 测交后代比为l∶l 11、(2021·福建惠安高中高三第三次月考)用豌豆进行遗传试验时,下列操作错误的是 CA.杂交时,须在开花前除去母本的雄蕊 B.自交时,雌蕊和雄蕊都无需除去 C.杂交时,须在开花前除去母本的雌蕊 D.人工授粉后,应套袋 12、(2021·湖南长郡中学高三第三次月考上)在孟德尔的豌豆杂交实验中,必须对母本采取的措施是( D )①开花前人工去雄 ②开花后人工去雄 ③自花授粉前人工去雄 ④去雄后自然授粉⑤去雄后人工授粉 ⑥授粉后套袋隔离 ⑦授粉后自然发育A.①④⑦ B.②④⑥ C.③⑤⑥ D.①⑤⑥ 13、(2021·福建惠安高中高三第三次月考)下列有关孟德尔豌豆杂交实验的叙述,正确的是 D A.孟德尔在豌豆开花时进行去雄和授粉,实现亲本的杂交 B.孟德尔研究豌豆花的构造,但无需考虑雌蕊、雄蕊的发育程度 C.孟德尔根据亲本中不同个体表现型来判断亲本是否纯合 D.孟德尔利用了豌豆自花传粉、闭花受粉的特性 14、(2021·福建惠安一中高三第二次月考)小麦抗锈病对易染病为显性,现有甲、乙两种抗锈病的小麦,其中一种为纯种,若要鉴别和保留纯合的抗锈病小麦,下列最简便易行的方法是 D A.甲 乙 B.甲 乙得F1再自交 C.甲、乙分别和隐性类型测交 D.甲甲、乙乙 15、(2021·福建泉州七中高三第二次月考上)若让某杂合体连续自交,那么能表示自交代数和纯合体比例关系的是( D ) 16、(2021·福建惠安一中高三第二次月考)已知一批基因型为AA和Aa的豌豆种子,其数目之比为1∶2,将这批种子种下,自然状态下(假设结实率相同)其子一代中基因型为AA、Aa、aa的种子数之比为 AA.3∶2∶1 B.1∶2∶1� C.3∶5∶1 D.4∶4∶1 17、(2021·福建厦门六中高三期中上)为了加深对基因分离定律的理解,某同学在2个小桶内各装入20个等大的方形积木(红色、蓝色各10个,分别代表配子D、d)。分别从两桶内随机抓取1个积木,记录组合后,将积木放入另外的容器中,这样直至抓完桶内积木。统计结果是,DD∶Dd∶dd=10∶5∶5,该比例不符合正常的结果。对上述做法,你认为应该改变的做法和理由是( B )A.把方形积木改换为质地、大小相同的小球;以便充分混合,避免人为误差B.每次抓取后,应将抓取的积木放回原桶;保证每种配子被抓取的概率相等C.抓取时应闭上眼睛,并充分摇匀;保证基因的随机分配和配子的随机结合D.将一桶内的2种配子各减少一半,另一桶数量不变;因为卵细胞数比精子数少18、(2021·吉林省东北师大附中高三第二次摸底考试)已知一批基因型为AA和Aa的豌豆种子,其数目之比为1∶2,将这批种子种下,进行自交,其子代中基因型为AA、Aa、aa的种子数之比为: AA. 3∶2∶1 B. 1∶2∶1 C. 3∶5∶1 D. 4∶4∶119、(2021·江苏仪征市高三期中)已知豌豆的高茎对矮茎为显性,现有一株高茎豌豆甲,要确定甲的基因型,最简便易行的办法是 C A.选另一株矮茎豌豆与甲杂交,子代中若有矮茎出现,则甲为杂合子 B.选另一株矮茎豌豆与甲杂交,子代若都表现为高茎,则甲为纯合子 C.让甲豌豆进行自花传粉,子代中若有矮茎出现,则甲为杂合子 D.让甲与多株高茎豌豆杂交,子代中若高、矮茎之比接近3∶1,则甲为杂合子 20、(2021·福建“四地六校”高三第二次联考)在孟德尔豌豆杂交实验中,若n代表研究的非同源染色体上等位基因对数,则2n代表( )A.F1的表现型种类数 B.F1形成F2时雌雄配子的组合数 C.F2的基因型种类数 D.F2的表现型种类数 21、(2021·福建惠安高中高三第三次月考)一对表现型正常的夫妻生了一个白化病的儿子和一个正常的女儿,该女儿与一白化病男子结婚,他们的儿子患病的概率是 BA.1/2 B.1/3 C.1/4 D.1/622、(2021·福建“四地六校”高三第二次联考)香豌豆中,只有当A、B两显性基因共同存在时,才开红花,一株红花植株与aaBb杂交,子代中有3/8开红花;若此红花植株自交,其红花后代中杂合子占( )A.8/9 B.9/16 C.2/9 D.1/9 23、(2021·福建“四地六校”高三第二次联考)根据下图实验:若再让F1黑斑蛇之间自交,在F2中有黑斑蛇和黄斑蛇两种表现型同时出现,根据上述杂交实验,下列结论中不正确的是( )A.F1黑斑蛇的基因型与亲代黑斑蛇的基因型相同 B.F2黑斑蛇的基因型与F1黑斑蛇的基因型相同 C.所有黑斑蛇的亲代中至少有一方是黑斑蛇 D.黄斑是隐性性状 24、(2021·福建长泰一中高三期中)孟德尔的遗传规律不能适用哪些生物( D ) ①噬菌体 ②乳酸菌 ③酵母菌 ④蓝藻 ⑤食用菌 A.①②③ B.②③⑤ C.②③④ D.①②④25、(2021·福建长泰一中高三期中)基因型为AaBbCcDd和AABbCcDd的向日葵杂交,按自由组合定律,后代中基因型为AABBCcdd的个体所占的比例为( D ) A.1/8 B.1/6 C.1/32 D.1/64 26、(2021·福建惠安高中高三第三次月考)两对基因(A-a和B-b)位于非同源染色体上,基因型为AaBb的植株自交,产生后代的纯合体中与亲本表现型相同的概率是( B ) A.3/4 B.1/4 C.3/16 D.1/16 ………………(见 http://wenku.baidu.com/view/23ec4f1ca300a6c30c229f81.html) 1、孟德尔在一对相对性状的研究过程中发现了基因的分离定律。下列有关基因分离定律的几组比例,最能说明基因分离定律实质的是:
A、F2的表现型比为3:1
B、F1产生配子的比为1:1
C、F2基因型的比为1:2:1
D、测交后代比为1:1

2、猫的无尾、有尾是一对相对性状,按基因的分离定律遗传。为了选育纯种的无尾猫,让无尾猫自交多代,但发现每代总会出现约1/3的有尾猫,其余均无尾。由此推断正确的是
A、猫的有尾性状是由显性基因控制的
B、自交后代出现有尾猫是基因突变所致
C、自交后代无尾猫中既有纯合子又有杂合子
D、无尾猫与有尾猫杂交后代中无尾猫约占1/2
3、对某区域一个种群进行随机抽样调查,测知该种群中基因型AA、Aa、aa的个体分别有若干只。假设该种群符合遗传平衡定律,由此可以计算出A和a的基因频率。那么,理论上这个种群中Aa这种基因型的频率为
A、0<=N<=100%
B、0<N<=50%
C、0<=N<50%
D、N>50%
1.B
题目问的是基因分离定律的实质是什么,而不是问如何验证基因分离定律。C是现象,D是验证,而不是实质。
生物体在减数分裂后期分裂形成配子时,等位基因随着同源染色体的分开而分离,分别进入到两个配子中,比为1:1.

2.D
根据题意可知,猫的无尾是显性,有尾是隐性。又因为无尾猫自交后代中总会出现约1/3的有尾猫,说明无尾猫中无纯合体,只有杂和体。
也就是说,无尾猫自交即Aa×Aa,则产生的受精卵为AA:Aa:aa=1:2:1,但因为A类型的受精卵不能正常发育,即所谓的胚胎致死故后代中无尾猫为2/3,有尾猫为1/3。
故选项A、B、C错误;D正确,因为Aa×aa,则后代中Aa和aa个50%。31)代入法,选择题嘛.
A 0.5 a0.5 2Aa=0.5
A 0.9 a0.1 2Aa=0.18
答案不会为0,因为题目是说AA、Aa、aa的个体分别有若干只,所以A,a都不为0

2)列方程A+a=1 A^2+a^2+2Aa=1
2Aa=1-a^2-A^2
a=1-A → 2Aa=-2A^2-2A
2Aa<=0.5 (一元二次的最大值)
2Aa>0,所以选B
事实上,这也是1个普遍存在的最基本的遗传定律,这就是孟德尔发现的第二个由于有些遗传疾病是由隐性遗传因子控制的,这类遗传病在通常情形下很少会出现
你可以看看高中的课本,讲的比初中详细啊,我们山东的课本是必修2来吧?好像是

孟德尔遗传定律是什么内容

1.孟德尔就是遗传学杰出的奠基人。他揭示出遗传学的两个基本定律——分离定律和自由组合定律,统称为孟德尔遗传规律。

分离定律:定义1:一对基因在杂合状态中保持相对的独立性,而在配子形成时,又按原样分离到不同配子中去的现象。所属学科:水产学(一级学科);水产生物育种学(二级学科)
定义2:一对基因在杂合状态各自保持其独立性,在配子形成时,彼此分离到不同的配子中去,在一般情况下,F1配子分离比是1:1,F2表型分离比是3:1,F2基因型分离比是1:2:1。所属学科:遗传学(一级学科);经典遗传学(二级学科)

自由组合规律:是现代生物遗传学三大基本定律之一。当具有两对(或更多对)相对性状的亲本进行杂交,在子一代产生配子时,在等位基因分离的同时,非同源染色体上的基因表现为自由组合。其实质是非等位基因自由组合,即一对染色体上的等位基因与另一对染色体上的等位基因的分离或组合是彼此间互不干扰的,各自独立地分配到配子中去。因此也称为独立分配律。
2.生物的遗传·孟德尔遗传定律 

任何一门学科的形成与发展,总是同当时热中于这门科学研究的杰出人物紧密相关,遗传学的形成与发展也不例外,孟德尔就是遗传学杰出的奠基人。孟德尔1822年出生于当时奥地利海森道夫地区的一个贫苦农民家庭,他的父亲擅长于园艺技术,在父亲的直接熏陶和影响之下,孟德尔自幼就爱好园艺。1843年,他中学毕业后考入奥尔谬茨大学哲学院继续学习,但因家境贫寒,被迫中途辍学。1843年10月,因生活所迫,他步入奥地利布隆城的一所修道院当修道士。从1851年到1853年,孟德尔在维也纳大学学习了4个学期,系统学习了植物学、动物学、物理学和化学等课程。与此同时,他还受到了从事科学研究的良好训练,这些都为他后来从事植物杂交的科学研究奠定了坚实的理论基础。1854年孟德尔回到家乡,继续在修道院任职,并利用业余时间开始了长达12年的植物杂交试验。在孟德尔从事的大量植物杂交试验中,以豌豆杂交试验的成绩最为出色。经过整整8年(1856-1864)的不懈努力,终于在1865年发表了《植物杂交试验》的论文,提出了遗传单位是遗传因子(现代遗传学称为基因)的论点,并揭示出遗传学的两个基本规律——分离规律和自由组合规律。这两个重要规律的发现和提出,为遗传学的诞生和发展奠定了坚实的基础,这也正是孟德尔名垂后世的重大科研成果。孟德尔的这篇不朽论文虽然问世了,但令人遗憾的是,由于他那不同于前人的创造性见解,对于他所处的时代显得太超前了,竟然使得他的科学论文在长达35年的时间里,没有引起生物界同行们的注意。直到1900年,他的发现被欧洲三位不同国籍的植物学家在各自的豌豆杂交试验中分别予以证实后,才受到重视和公认,遗传学的研究从此也就很快地发展起来。一、孟德尔的分离规律豌豆具有一些稳定的、容易区分的性状,这很符合孟德尔的试验要求。所谓性状,即指生物体的形态、结构和生理、生化等特性的总称。在他的杂交试验中,孟德尔全神贯注地研究了7对相对性状的遗传规律。所谓相对性状,即指同种生物同一性状的不同表现类型,如豌豆花色有红花与白花之分,种子形状有圆粒与皱粒之分等等。为了方便和有利于分析研究起见,他首先只针对一对相对性状的传递情况进行研究,然后再观察多对相对性状在一起的传递情况。这种分析方法是孟德尔获得成功的一个重要原因。1.显性性状与隐性性状大家知道,孟德尔的论文的醒目标题是《植物杂交试验》,因此他所从事试验的方法,主要是“杂交试验法”。他用纯种的高茎豌豆与矮茎豌豆作亲本(亲本以P表示),在它们的不同植株间进行异花传粉。如图2-4所示高茎豌豆与矮茎豌豆异花传粉的示意图。结果发现,无论是以高茎作母本,矮茎作父本,还是以高茎作父本,矮茎作母本(即无论是正交还是反交),它们杂交得到的第一代植株(简称“子一代”,以F1表示)都表现为高茎。也就是说,就这一对相对性状而言,F1植株的性状只能表现出双亲中的一个亲本的性状——高茎,而另一亲本的性状——矮茎,则在F1中完全没有得到表现。又如,纯种的红花豌豆和白花豌豆进行杂交试验时,无论是正交还是反交,F1植株全都是红花豌豆。正因为如此,孟德尔就把在这一对性状中,F1能够表现出来的性状,如高茎、红花,叫做显性性状,而把F1未能表现出来的性状,如矮茎、白花,叫做隐性性状。孟德尔在豌豆的其他5对相对性状的杂交试验中,都得到了同样的试验结果,即都有易于区别的显性性状和隐性性状。2.分离现象及分离比在上述的孟德尔杂交试验中,由于在杂种F1时只表现出相对性状中的一个性状——显性性状,那么,相对性状中的另一个性状——隐性性状,是不是就此消失了呢?能否表现出来呢?带着这样的疑问,孟德尔继续着自己的杂交试验工作。孟德尔让上述F1的高茎豌豆自花授粉,然后把所结出的F2豌豆种子于次年再播种下去,得到杂种F2的豌豆植株,结果出现了两种类型:一种是高茎的豌豆(显性性状),一种是矮茎的豌豆(隐性性状),即:一对相对性状的两种不同表现形式——高茎和矮茎性状都表现出来了。孟德尔的疑问解除了,并把这种现象称为分离现象。不仅如此,孟德尔还从F2的高、矮茎豌豆的数字统计中发现:在1064株豌豆中,高茎的有787株,矮茎的有277株,两者数目之比,近似于3∶1。如图2-4A所示。孟德尔以同样的试验方法,又进行了红花豌豆的F1自花授粉。在杂种F2的豌豆植株中,同样也出现了两种类型:一种是红花豌豆(显性性状),另一种是白花豌豆(隐性性状)。对此进行数字统计结果表明,在929株豌豆中,红花豌豆有705株,白花豌豆有224株,二者之比同样接近于3∶1。孟德尔还分别对其他5对相对性状作了同样的杂交试验,其结果也都是如此。我们概括上述孟德尔的杂交试验结果,至少有三点值得注意:(1)F1的全部植株,都只表现某一亲本的性状(显性性状),而另一亲本的性状,则被暂时遮盖而未表现(隐性性状)。(2)在F2里,杂交亲本的相对性状——显性性状和隐性性状又都表现出来了,这就是性状分离现象。由此可见,隐性性状在F1里并没有消失,只是暂时被遮盖而未能得以表现罢了。(3)在F2的群体中,具有显性性状的植株数与具有隐性性状的植株数,常常表现出一定的分离比,其比值近似于3∶1。3.对性状分离现象的解释孟德尔对上述7个豌豆杂交试验结果中所反映出来的、值得注意的三个有规律的现象感到吃惊。事实上,他已认识到,这绝对不是某种偶然的巧合,而是一种遗传上的普遍规律,但对于3∶1的性状分离比,他仍感到困惑不解。经过一番创造性思维后,终于茅塞顿开,提出了遗传因子的分离假说,其主要内容可归纳为:(1)生物性状的遗传由遗传因子决定(遗传因子后来被称为基因)。(2)遗传因子在体细胞内成对存在,其中一个成员来自父本,另一个成员来自母本,二者分别由精卵细胞带入。在形成配子时,成对的遗传因子又彼此分离,并且各自进入到一个配子中。这样,在每一个配子中,就只含有成对遗传因子中的一个成员,这个成员也许来自父本,也许来自母本。(3)在杂种F1的体细胞中,两个遗传因子的成员不同,它们之间是处在各自独立、互不干涉的状态之中,但二者对性状发育所起的作用却表现出明显的差异,即一方对另一方起了决定性的作用,因而有显性因子和隐性因子之分,随之而来的也就有了显性性状与隐性性状之分。(4)杂种F1所产生的不同类型的配子,其数目相等,而雌雄配子的结合又是随机的,即各种不同类型的雌配子与雄配子的结合机会均等。为了更好地证明分离现象,下面用一对遗传因子的图解来说明孟德尔的豌豆杂交试验及其假说,如图2-5所示。我们用大写字母D代表决定高茎豌豆的显性遗传因子,用小写字母d代表矮茎豌豆的隐性遗传因子。在生物的体细胞内,遗传因子是成对存在的,因此,在纯种高茎豌豆的体细胞内含有一对决定高茎性状的显性遗传因子DD,在纯种矮茎豌豆的体细胞内含有一对决定矮茎性状的隐性遗传因子dd。杂交产生的F1的体细胞中,D和d结合成Dd,由于D(高茎)对d(矮茎)是显性,故F1植株全部为高茎豌豆。当F1进行减数分裂时,其成对的遗传因子D和d又得彼此分离,最终产生了两种不同类型的配子。一种是含有遗传因子D的配子,另一种是含有遗传因子d的配子,而且两种配子在数量上相等,各占1/2。因此,上述两种雌雄配子的结合便产生了三种组合:DD、Dd和dd,它们之间的比接近于1∶2∶1,而在性状表现上则接近于3(高)∶1(矮)。因此,孟德尔的遗传因子假说,使得豌豆杂交试验所得到的相似结果有了科学的、圆满的解释。基因型与表现型我们已经看到,在上述一对遗传因子的遗传分析中,遗传下来的和最终表现出来的并不完全是一回事,如当遗传结构为DD型时,其表现出来的性状是高茎豌豆,而遗传结构为Dd型时,其表现出来的也是高茎豌豆。像这样,生物个体所表现出来的外形特征和生理特性叫做表现型,如高茎与矮茎,红花与白花;而生物个体或其某一性状的遗传基础,则被称为基因型,如高茎豌豆的基因型有DD和Dd两种,而矮茎豌豆的基因型只有dd一种。由相同遗传因子的配子结合成的合子发育而成的个体叫做纯合体,如DD和dd的植株;凡是由不同遗传因子的配子结合成的合子发育而成的个体则称为杂合体,如Dd。基因型是生物个体内部的遗传物质结构,因此,生物个体的基因型在很大程度上决定了生物个体的表现型。例如,含有显性遗传因子D的豌豆植株(DD和Dd)都表现为高茎,无显性遗传因子的豌豆植株(dd)都表现为矮茎。由此可见,基因型是性状表现的内在因素,而表现型则是基因型的表现形式。由以上分析我们还可知道,表现型相同,基因型却并不一定相同。例如,DD和Dd的表现型都是高茎,但其基因型并不相同,并且它们的下一代有差别:DD的下一代都是高茎的,而Dd的下一代则有分离现象——既有高茎,也有矮茎。4.分离规律的验证前面讲到孟德尔对分离现象的解释,仅仅建立在一种假说基础之上,他本人也十分清楚这一点。假说毕竟只是假说,不能用来代替真理,要使这个假说上升为科学真理,单凭其能清楚地解释他所得到的试验结果,那是远远不够的,还必须用实验的方法进行验证这一假说。下面介绍孟德尔设计的第一种验证方法,也是他用得最多的测交法。测交就是让杂种子一代与隐性类型相交,用来测定F1的基因型。按照孟德尔对分离现象的解释,杂种子一代F1(Dd)一定会产生带有遗传因子D和d的两种配子,并且两者的数目相等;而隐性类型(dd)只能产生一种带有隐性遗传因子d的配子,这种配子不会遮盖F1中遗传因子的作用。所以,测交产生的后代应当一半是高茎(Dd)的,一半是矮茎(dd)的,即两种性状之比为1∶1。如图2-6所示测交实验的方法。孟德尔用子一代高茎豌豆(Dd)与矮茎豌豆(dd)相交,得到的后代共64株,其中高茎的30株,矮茎的34株,即性状分离比接近1∶1,实验结果符合预先设想。对其他几对相对性状的测交试验,也无一例外地得到了近似于1∶1的分离比。孟德尔的测交结果,雄辩地证明了他自己提出的遗传因子分离假说是正确的,是完全建立在科学的基础上的。5.分离规律的实质孟德尔提出的遗传因子的分离假说,用他自己所设计的测交等一系列试验,已经得到了充分的验证,亦被后人无数次的试验所证实,现已被世人所公认,并被尊称为孟德尔的分离规律。那么,孟德尔分离规律的实质是什么呢?这可以用一句话来概括,那就是:杂合体中决定某一性状的成对遗传因子,在减数分裂过程中,彼此分离,互不干扰,使得配子中只具有成对遗传因子中的一个,从而产生数目相等的、两种类型的配子,且独立地遗传给后代,这就是孟德尔的分离规律。思考题孟德尔从开始试验到最后得出分离规律,都进行了哪些工作?这个过程对我们从事科学研究有何启示?二、孟德尔的自由组合规律孟德尔在揭示了由一对遗传因子(或一对等位基因)控制的一对相对性状杂交的遗传规律——分离规律之后,这位才思敏捷的科学工作者,又接连进行了两对、三对甚至更多对相对性状杂交的遗传试验,进而又发现了第二条重要的遗传学规律,即自由组合规律,也有人称它为独立分配规律。这里我们仅介绍他所进行的两对相对性状的杂交试验。1.杂交试验现象的观察孟德尔在进行两对相对性状的杂交试验时,仍以豌豆为材料。他选取了具有两对相对性状差异的纯合体作为亲本进行杂交,一个亲本是结黄色圆形种子(简称黄色圆粒),另一亲本是结绿色皱形种子(简称绿色皱粒),无论是正交还是反交,所得到的F1全都是黄色圆形种子。由此可知,豌豆的黄色对绿色是显性,圆粒对皱粒是显性,所以F1的豌豆呈现黄色圆粒性状。如果把F1的种子播下去,让它们的植株进行自花授粉(自交),则在F2中出现了明显的形状分离和自由组合现象。在共计得到的556粒F2种子中,有四种不同的表现类型,其数目分别为:如果以数量最少的绿色皱形种子32粒作为比例数1,那么F2的四种表现型的数字比例大约为9∶3∶3∶1。如图2-7所示豌豆种子两对相对性状的遗传实验。从以上豌豆杂交试验结果看出,在F2所出现的四种类型中,有两种是亲本原有的性状组合,即黄色圆形种子和绿色皱形种子,还有两种不同于亲本类型的新组合,即黄色皱形种子和绿色圆形种子,其结果显示出不同相对性状之间的自由组合。2.杂交试验结果的分析孟德尔在杂交试验的分析研究中发现,如果单就其中的一对相对性状而言,那么,其杂交后代的显、隐性性状之比仍然符合3∶1的近似比值。以上性状分离比的实际情况充分表明,这两对相对性状的遗传,分别是由两对遗传因子控制着,其传递方式依然符合于分离规律。此外,它还表明了一对相对性状的分离与另一对相对性状的分离无关,二者在遗传上是彼此独立的。如果把这两对相对性状联系在一起进行考虑,那么,这个F2表现型的分离比,应该是它们各自F2表现型分离比(3∶1)的乘积:这也表明,控制黄、绿和圆、皱两对相对性状的两对等位基因,既能彼此分离,又能自由组合。3.自由组合现象的解释那么,对上述遗传现象,又该如何解释呢?孟德尔根据上述杂交试验的结果,提出了不同对的遗传因子在形成配子中自由组合的理论。因为最初选用的一个亲本——黄色圆形的豌豆是纯合子,其基因型为YYRR,在这里,Y代表黄色,R代表圆形,由于它们都是显性,故用大写字母表示。而选用的另一亲本——绿色皱形豌豆也是纯合子,其基因型为yyrr,这里y代表绿色,r代表皱形,由于它们都是隐性,所以用小写字母来表示。由于这两个亲本都是纯合体,所以它们都只能产生一种类型的配子,即:YYRR——YRyyrr——yr二者杂交,YR配子与yr配子结合,所得后代F1的基因型全为YyRr,即全为杂合体。由于基因间的显隐性关系,所以F1的表现型全为黄色圆形种子。杂合的F1在形成配子时,根据分离规律,即Y与y分离,R与r分离,然后每对基因中的一个成员各自进入到下一个配子中,这样,在分离了的各对基因成员之间,便会出现随机的自由组合,即:(1) Y与R组合成YR;(2)Y与r组合成Yr;(3)y与R组合成yR;(4)y与r组合成yr。由于它们彼此间相互组合的机会均等,因此杂种F1(YyRr)能够产生四种不同类型、相等数量的配子。当杂种F1自交时,这四种不同类型的雌雄配子随机结合,便在F2中产生16种组合中的9种基因型合子。由于显隐性基因的存在,这9种基因型只能有四种表现型,即:黄色圆形、黄色皱形、绿色圆形、绿色皱形。如图2-8所示它们之间的比例为9∶3∶3∶1。这就是孟德尔当时提出的遗传因子自由组合假说,这个假说圆满地解释了他观察到的试验结果。事实上,这也是一个普遍存在的最基本的遗传定律,这就是孟德尔发现的第二个遗传定律——自由组合规律,也有人称它为独立分配规律。4.自由组合规律的验证与分离规律相类似,要将自由组合规律由假说上升为真理,同样也需要科学试验的验证。孟德尔为了证实具有两对相对性状的F1杂种,确实产生了四种数目相等的不同配子,他同样采用了测交法来验证。把F1杂种与双隐性亲本进行杂交,由于双隐性亲本只能产生一种含有两个隐性基因的配子(yr),所以测交所产生的后代,不仅能表现出杂种配子的类型,而且还能反映出各种类型配子的比数。换句话说,当F1杂种与双隐性亲本测交后,如能产生四种不同类型的后代,而且比数相等,那么,就证实了F1杂种在形成配子时,其基因就是按照自由组合的规律彼此结合的。为此,孟德尔做了以下测交试验,如图2-9所示。实际测交的结果,无论是正交还是反交,都得到了四种数目相近的不同类型的后代,其比数为1∶1∶1∶1,与预期的结果完全符合。这就证实了雌雄杂种F1在形成配子时,确实产生了四种数目相等的配子,从而验证了自由组合规律的正确性。5.自由组合规律的实质根据前面所讲的可以知道,具有两对(或更多对)相对性状的亲本进行杂交,在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这就是自由组合规律的实质。也就是说,一对等位基因与另一对等位基因的分离与组合互不干扰,各自独立地分配到配子中。三、孟德尔遗传规律在理论和实践上的意义孟德尔的分离规律和自由组合规律是遗传学中最基本、最重要的规律,后来发现的许多遗传学规律都是在它们的基础上产生并建立起来的,它犹如一盏明灯,照亮了近代遗传学发展的前途。  1.理论应用从理论上讲,自由组合规律为解释自然界生物的多样性提供了重要的理论依据。大家知道,导致生物发生变异的原因固然很多,但是,基因的自由组合却是出现生物性状多样性的重要原因。比如说,一对具有20对等位基因(这20对等位基因分别位于20对同源染色体上)的生物进行杂交,F2可能出现的表现型就有220=1048576种。这可以说明现在世界生物种类为何如此繁多。当然,生物种类多样性的原因还包括基因突变和染色体变异,这在后面还要讲到。分离规律还可帮助我们更好地理解为什么近亲不能结婚的原因。由于有些遗传疾病是由隐性遗传因子控制的,这些遗传病在通常情况下很少会出现,但是在近亲结婚(如表兄妹结婚)的情况下,他们有可能从共同的祖先那里继承相同的致病基因,从而使后代出现病症的机会大大增加。因此,近亲结婚必须禁止,这在我国婚姻法中已有明文规定。</PGN0049A.TXT/PGN>2.实践应用孟德尔遗传规律在实践中的一个重要应用就是在植物的杂交育种上。在杂交育种的实践中,可以有目的地将两个或多个品种的优良性状结合在一起,再经过自交,不断进行纯化和选择,从而得到一种符合理想要求的新品种。比方说,有这样两个品种的番茄:一个是抗病、黄果肉品种,另一个是易感病、红果肉品种,现在需要培育出一个既能稳定遗传,又能抗病,而且还是红果肉的新品种。你就可以让这两个品种的番茄进行杂交,在F2中就会出现既抗病又是红果肉的新型品种。用它作种子繁殖下去,经过选择和培育,就可以得到你所需要的能稳定遗传的番茄新品种。

希望对你有帮助,谢谢。
孟德尔就是遗传学杰出的奠基人。他揭示出遗传学的两个基本定律——分离定律和自由组合定律,统称为孟德尔遗传规律。

分离定律:定义1:一对基因在杂合状态中保持相对的独立性,而在配子形成时,又按原样分离到不同配子中去的现象。所属学科:水产学(一级学科);水产生物育种学(二级学科)
定义2:一对基因在杂合状态各自保持其独立性,在配子形成时,彼此分离到不同的配子中去,在一般情况下,F1配子分离比是1:1,F2表型分离比是3:1,F2基因型分离比是1:2:1。所属学科:遗传学(一级学科);经典遗传学(二级学科)

自由组合规律:是现代生物遗传学三大基本定律之一。当具有两对(或更多对)相对性状的亲本进行杂交,在子一代产生配子时,在等位基因分离的同时,非同源染色体上的基因表现为自由组合。其实质是非等位基因自由组合,即一对染色体上的等位基因与另一对染色体上的等位基因的分离或组合是彼此间互不干扰的,各自独立地分配到配子中去。因此也称为独立分配律。
本内容由全国科学技术名词审定委员会审定公布
基因的分离定律是遗传学的三大定律之一(另外两个是基因的自由组合定律和基因的连锁交换定律)。它由奥国遗传学家孟德尔(G.J.Mendel, 1822~1844)经豌豆杂交试验发现。其内容为:具有相对性状的亲本P1(含基因对AA)和P2(含基因对aa)产生的子代第一代仅表现P1的性状;子代第二代既有P1的也有P2的性状,并且出现P1与P2性状的比例为3:1。

基因的自由组合定律,或称基因的独立分配定律,是遗传学的三大定律之一(另外两个是基因的分离定律和基因的连锁交换定律)。它由奥国遗传学家孟德尔(G.J.Mendel,1822-1844)经豌豆杂交试验发现。其内容为:非同源染色体上的决定不同对性状的基因在形成配子时等位基因分离,不同对基因(非等位基因)之间互不干扰,独立组合。孟德尔在做两对相对性状的杂交实验时发现,基因分离比为9:3:3:1。

基因的连锁和交换定律的实质是:在进行减数分裂形成配子时,位于同一条染色体上的不同基因,常常连在一起进入配子;在减数分裂形成四分体时,位于同源染色体上的等位基因有时会随着非姐妹染色单体的交换而发生交换,因而产生了基因的重组。应当说明的是,基因的连锁和交换定律与基因的自由组合定律并不矛盾,它们是在不同情况下发生的遗传规律:位于非同源染色体上的两对(或多对)基因,是按照自由组合定律向后代传递的,而位于同源染色体上的两对(或多对)基因,则是按照连锁和交换定律向后代传递的。
孟德尔遗传定律是指分离定律和自由组合定律。
分离定律简单来说就是同一个体产生配子(精子、卵子等)的时候,等位基因总是会分离到不同的配子中,比如说一个个体的基因结构是Dd的显性基因与隐性基因搭配的话,那产生的配子中会有一半携带显性基因D,一半携带隐性基因d。
自由组合定律是相对于不同个体而言的,不同个体产生的配子在受精的过程中总是随机的,一个个体产生的配子和另一个个体产生的配子结合的概率相同,比如一个配子有两个结合对象的话,那么和每个结合对象结合的概率都是二分之一。
孟德尔遗传定律分为分离定律和自由组合定律。
分离定律:在生物体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
自由组合定律:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。
1909年,丹麦的生物学家约翰逊给孟德尔的“遗传因子”一词起了个新名字,叫基因。

孟德尔遗传定律内容是什么?

基因的分离定律。
2.基因的自由组合定律。
孟德尔定律由奥地利遗传学家 格里哥·孟德尔在1865年发表并催生了遗传学诞生的著名定律。他揭示出遗传学的两个基本定律—— 分离定律和 自由组合定律,统称为 孟德尔遗传规律。
1.概述
在孟德尔(Gregor Johann Mendel)以前,孩子为什么像父母这样的遗传现象没有明确的科学解释,当时比较流行的 融合说或者 混合说将这种现象解释为:母方 卵子与父方 精子中存在的“某种液体”混合、是孩子继承父母两方特征的原因。与此相对,孟德尔自立 粒子说并且预言,决定父母方性质的是某种单位化的粒子状物质。由于当时的技术水平的局限孟德尔没能完全解释这里的粒子是什么,我们知道这里的粒子就是 遗传因子。可以说孟德尔为以后的遗传因子理论奠定了框架基础,这一发现具有历史性的意义。
可惜在孟德尔生前,这一发现没有得到充分的瞩目。但是也没有完全被埋没,如19世纪中叶,威廉姆・霍克、阿尔贝尔特・布朗贝里、伊万・舒马尔豪森、海德・贝利等人都在各自的论文中提到了孟德尔定律。此外, 大不列颠百科全书1881年版已经有了对孟德尔研究的介绍。
1900年荷兰的雨果·德·弗里斯(Hugo de Vries),德国的卡尔·柯灵斯(Carl Correns)和 奥地利的契马克(Erich von Tschermak)、各自独立研究再次发现了这一定律。经过对过去文献的调查,最终发现了孟德尔的论文。并且以此将这一定律命名为“孟德尔定律”。为这一定律命名的是柯灵斯,孟德尔个人没有将之称为“定律”。
2.理论与应用价值
从理论上讲, 自由组合规律为解释自然界生物的 多样性提供了重要的理论依据。导致生物发生变异的原因固然很多,但是, 基因的自由组合却是出现生物性状多样性的重要原因。比如说,一对具有20对 等位基因(这20对等位基因分别位于20对 同源染色体上)的生物进行杂交,F2可能出现的表现型就有2^20=1048576种。这可以说明为什么世界生物种类为何如此繁多。
分离规律还可帮助更好地理解为什么近亲不能结婚的原因。由于有些遗传疾病是由隐性 遗传因子控制的,这些遗传病在通常情况下很少会出现,但是在近亲结婚(如 表兄妹结婚)的情况下,他们有可能从共同的祖先那里继承相同的致病基因,从而使后代出现病症的机会大大增加。因此,近亲结婚必须禁止,这在我国婚姻法中已有明文规定。
孟德尔遗传规律在实践中的一个重要应用就是在植物的杂交育种上。在杂交育种的实践中,可以有目的地将两个或多个品种的优良性状结合在一起,再经过自交,不断进行纯化和选择,从而得到一种符合理想要求的新品种。比方说,有这样两个品种的番茄:一个是抗病、黄果肉品种,另一个是易感病、红果肉品种,需要培育出一个既能 稳定遗传,又能抗病,而且还是红果肉的新品种。你就可以让这两个品种的番茄进行杂交,在F2中就会出现既抗病又是红果肉的新型品种。用它作种子繁殖下去,经过选择和培育,就可以得到你所需要的能稳定遗传的番茄新品种。
6
分享评论

完成点赞任务,奖励10财富值
加入战队答题,平均奖励翻1.5倍
赚财富值
提分高三生物 北大博士邱崇--高考必考清单--快速提分技巧
提分高三生物 孩子高考基础差,盲目刷再多题也没用,要找对技巧,找对方法,用这套“高考必备清单”,教你解题技巧,只用40%的精力,拿下90%的分数!
k12.dexiya.xyz广告
精神病症状_什么是精神疾病?有哪些症状表现?
N精神病症状 精神疾病常见表现为:暴躁易怒,情绪异常,胡思乱想,敏感多疑等症状,患者的认知,情感,意识,动作等心理活动出现异常,在线详询。
西安新城康宁心理医院有限公司广告
孟德尔遗传定律内容是什么?
专家1对1在线解答问题
5分钟内响应 | 万名专业答主
极速提问
篮球大图 正在咨询一个旅游问题
— 你看完啦,以下内容更有趣 —
鑫圣贵金属_开户送600美金_正规交易平台
鑫圣贵金属_开户送600美元+500红包,2小时快捷出金,金银业贸易场AA类 81号会员。鑫圣贵金属_0元开户,10美元起投资,12年稳健运营平台,MT4/EA双向交易平台!返点快低点差
广告2021-01-30
孟德尔遗传定律是什么内容
1.基因的分离定律。 2.基因的自由组合定律。 孟德尔定律由奥地利遗传学家 格里哥·孟德尔在1865年发表并催生了遗传学诞生的著名定律。他揭示出遗传学的两个基本定律—— 分离定律和 自由组合定律,统称为 孟德尔遗传规律。 1.概述 在孟德尔(Gregor Johann Mendel)以前,孩子为什么像父母这样的遗传现象没有明确的科学解释,当时比较流行的 融合说或者 混合说将这种现象解释为:母方 卵子与父方 精子中存在的“某种液体”混合、是孩子继承父母两方特征的原因。与此相对,孟德尔自立 粒子说并且预言,决定父母方性质的是某种单位化的粒子状物质。由于当时的技术水平的局限孟德尔没能完全解释这里的粒子是什么,我们知道这里的粒子就是 遗传因子。可以说孟德尔为以后的遗传因子理论奠定了框架基础,这一发现具有历史性的意义。 可惜在孟德尔生前,这一发现没有得到充分的瞩目。但是也没有完全被埋没,如19世纪中叶,威廉姆・霍克、阿尔贝尔特・布朗贝里、伊万・舒马尔豪森、海德・贝利等人都在各自的论文中提到了孟德尔定律。此外, 大不列颠百科全书1881年版已经有了对孟德尔研究的介绍。 1900年荷兰的雨果·德·弗里斯(Hugo de Vries),德国的卡尔·柯灵斯(Carl Correns)和 奥地利的契马克(Erich von Tschermak)、各自独立研究再次发现了这一定律。经过对过去文献的调查,最终发现了孟德尔的论文。并且以此将这一定律命名为“孟德尔定律”。为这一定律命名的是柯灵斯,孟德尔个人没有将之称为“定律”。 2.理论与应用价值 从理论上讲, 自由组合规律为解释自然界生物的 多样性提供了重要的理论依据。导致生物发生变异的原因固然很多,但是, 基因的自由组合却是出现生物性状多样性的重要原因。比如说,一对具有20对 等位基因(这20对等位基因分别位于20对 同源染色体上)的生物进行杂交,F2可能出现的表现型就有2^20=1048576种。这可以说明为什么世界生物种类为何如此繁多。 分离规律还可帮助更好地理解为什么近亲不能结婚的原因。由于有些遗传疾病是由隐性 遗传因子控制的,这些遗传病在通常情况下很少会出现,但是在近亲结婚(如 表兄妹结婚)的情况下,他们有可能从共同的祖先那里继承相同的致病基因,从而使后代出现病症的机会大大增加。因此,近亲结婚必须禁止,这在我国婚姻法中已有明文规定。 孟德尔遗传规律在实践中的一个重要应用就是在植物的杂交育种上。在杂交育种的实践中,可以有目的地将两个或多个品种的优良性状结合在一起,再经过自交,不断进行纯化和选择,从而得到一种符合理想要求的新品种。比方说,有这样两个品种的番茄:一个是抗病、黄果肉品种,另一个是易感病、红果肉品种,需要培育出一个既能 稳定遗传,又能抗病,而且还是红果肉的新品种。你就可以让这两个品种的番茄进行杂交,在F2中就会出现既抗病又是红果肉的新型品种。用它作种子繁殖下去,经过选择和培育,就可以得到你所需要的能稳定遗传的番茄新品种。
44赞·6,455浏览2021-03-30
孟德尔遗传定律是什么内容
基因的分离定律是遗传学的三大定律之一(另外两个是基因的自由组合定律和基因的连锁交换定律)。它由奥国遗传学家孟德尔(G.J.Mendel, 1822~1844)经豌豆杂交试验发现。其内容为:具有相对性状的亲本P1(含基因对AA)和P2(含基因对aa)产生的子代第一代仅表现P1的性状;子代第二代既有P1的也有P2的性状,并且出现P1与P2性状的比例为3:1。 基因的自由组合定律,或称基因的独立分配定律,是遗传学的三大定律之一(另外两个是基因的分离定律和基因的连锁交换定律)。它由奥国遗传学家孟德尔(G.J.Mendel,1822-1844)经豌豆杂交试验发现。其内容为:非同源染色体上的决定不同对性状的基因在形成配子时等位基因分离,不同对基因(非等位基因)之间互不干扰,独立组合。孟德尔在做两对相对性状的杂交实验时发现,基因分离比为9:3:3:1。 基因的连锁和交换定律的实质是:在进行减数分裂形成配子时,位于同一条染色体上的不同基因,常常连在一起进入配子;在减数分裂形成四分体时,位于同源染色体上的等位基因有时会随着非姐妹染色单体的交换而发生交换,因而产生了基因的重组。应当说明的是,基因的连锁和交换定律与基因的自由组合定律并不矛盾,它们是在不同情况下发生的遗传规律:位于非同源染色体上的两对(或多对)基因,是按照自由组合定律向后代传递的,而位于同源染色体上的两对(或多对)基因,则是按照连锁和交换定律向后代传递的。
9赞·8,855浏览
孟德尔遗传定律的内容
1播放
孟德尔遗传定律详细内容
杂合体中决定某一性状的成对遗传因子,在减数分裂过程中,彼此分离,互不干扰,使得配子中只具有成对遗传因子中的一个,从而产生数目相等的、两种类型的配子,且独立地遗传给后代,这就是孟德尔的分离规律。 具有两对(或更多对)相对性状的亲本进行杂交,在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这就是自由组合规律的实质。也就是说,一对等位基因与另一对等位基因的分离与组合互不干扰,各自独立地分配到配子中。
246赞·16,407浏览
遗传三大定律的内容是什么?
孟德尔的分离规律 孟德尔的自由组合规律 连锁与互换规律 孟德尔的分离规律   分离定律 law of segregation为孟德尔遗传定律之一。 孟德尔决定相对性状的一对等位基因同时存在于杂种一代(F1)的个体中,但仍维持它们各自的个体性,在配子形成时互相分开,分别进入一个配子细胞中去。在孟德尔定律中最根本的就是分离定律。比较普遍的说法是:在纯合子中相同染色体上占有同一基因位置的来自双亲的二个基因决不会发生融合而是仍维持其个体性,而在配子形成时,基因发生分离,其结果是杂种第二代(F2)和回交一代(B1)中性状会发生分离。   在杂合子的细胞中,位于一对同源染色体,具有一定的独立性,生物体在进行减数分裂形成配子时,等位基因会随着的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代. 孟德尔的自由组合规律   在孟德尔从事的大量植物杂交试验中,以豌豆杂交试验的成绩最为出色。经过整整8年(1856-1864)的不懈努力,终于在1865年发表了《植物杂交试验》的论文,提出了遗传单位是遗传因子(现代遗传学称为基因)的论点,并揭示出遗传学的两个基本规律——分离规律和自由组合规律。这两个重要规律的发现和提出,为遗传学的诞生和发展奠定了坚实的基础,这也正是孟德尔名垂后世的重大科研成果。 连锁与互换规律   1910年,美国哥伦比亚大学的摩尔根(1866—1945)和他的几位学生开始了对果蝇的遗传研究。 摩尔根果蝇是一种在夏天的水果摊上常见的小昆虫,它有一对小小的红眼睛。当摩尔根用果蝇做实验的第一年,他们发现了一种雄性白眼果蝇,这种新的果蝇是经过红眼果蝇自发突变而来的。当把雄性白眼果蝇与雌性红眼果蝇交配,获得的后代均是红眼果蝇,说明眼睛颜色的红色对白色是显性的: 当把F1代的雄性红眼果蝇与雌性红眼果蝇交配时,获得的F2代中红眼与白眼的比例仍为3:1,但是雄性与雌性则不存在3:1关系,且所有的白眼果蝇均是雄性的,这说明白眼性状是与性别相联系的,也就是说,这两个不同的性状是联系在一起的。由于白眼与性别相连,因此叫做性连锁(sex-linkage)。人类中的色盲和血友病(hemophilia)也是X隐性连锁的。
2赞·810浏览2021-10-10
精神病精神病?告诉你一个简单调理精神病的方法
根据文中提到的孟德尔为您推荐
无锡凯祥医疗健康管理有限公司广告
眼袋【西安国际医学整形医院】孙峰主任祛眼袋多少钱
西安国际医学中心有..广告
婚前买的房子婚后加名字有用吗
由于属婚前财产的产权证加配偶名字的,是婚前个人单独的房产,部分产权份额转移给配偶,按转移登记(赠与)
4条回答·29人在看
一个人的自律有多重要?
0播放
匿名用户
香醋,米醋,陈醋,白醋,别用乱了?
6播放
匿名用户
彭冠英颜值演技在线,为什么不火?
他曾是翟天临的同学,颜值演技都在线,出道10年了却都不火。这些年圈里面出现了不少的新的艺人,他们或许
25条回答·152人在看
精神症_身体出现这几种症状,说明你已经有精神了
西安脑康心理康复医..广告
梦见手机屏幕碎了,预示着什么?
梦见手机屏幕碎了,不会预示着有什么事情要发生,梦是人体的一个生理现象,每个人都做过梦。梦见的内容五花
28条回答·20,763人在看
正在加载

1.基因的分离定律。

2.基因的自由组合定律。

高中生物 能不能给详细的解释一下孟德尔遗传定理

如何详细?
分为 分离定律和自由组合定律
分离定律:杂合体中决定某一性状的成对遗传因子,在减数分裂过程中,彼此分离,互不干扰,使得配子中只具有成对遗传因子中的一个,从而产生数目相等的、两种类型的配子,且独立地遗传给后代
自由组合定律:具有两对(或更多对)相对性状的亲本进行杂交,在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这就是自由组合规律的实质。也就是说,一对等位基因与另一对等位基因的分离与组合互不干扰,各自独立地分配到配子中
两者都是孟德尔先生在他的“豌豆规律我来找找”游戏中 通过猜想实验再猜想再实验得出的
详见高中生物书之遗传与进化
高中生物了解上面的就OK 希望能帮到你...哈哈哈哈哈
孟德尔遗传定理
就是同源染色体分离,非同源染色体自由组合。

针对高中生物学生易出现的问题进行解决

孟德尔遗传规律 孟德尔遗传规律
任何一门学科的形成与发展,总是同当时热中于这门科学研究的杰出人物紧密相关,遗传学的形成与发展也不例外,孟德尔就是遗传学杰出的奠基人。他揭示出遗传学的两个基本定律——分离定律和自由组合定律。
孟德尔
1822年出生于当时奥地利海森道夫地区的一个贫苦农民家庭,他的父亲擅长于园艺技术,在父亲的直接熏陶和影响之下,孟德尔自幼就爱好园艺。1843年,他中学毕业后考入奥尔谬茨大学哲学院继续学习,但因家境贫寒,被迫中途辍学。1843年10月,因生活所迫,他步入奥地利布隆城的一所修道院当修道士。从1851年到1853年,孟德尔在维也纳大学学习了4个学期,系统学习了植物学、动物学、物理学和化学等课程。与此同时,他还受到了从事科学研究的良好训练,这些都为他后来从事植物杂交的科学研究奠定了坚实的理论基础。1854年孟德尔回到家乡,继续在修道院任职,并利用业余时间开始了长达12年的植物杂交试验。
在孟德尔从事的大量植物杂交试验中,以豌豆杂交试验的成绩最为出色。经过整整8年(1856-1864)的不懈努力,终于在1865年发表了《植物杂交试验》的论文,提出了遗传单位是遗传因子(现代遗传学称为基因)的论点,并揭示出遗传学的两个基本规律——分离规律和自由组合规律。这两个重要规律的发现和提出,为遗传学的诞生和发展奠定了坚实的基础,这也正是孟德尔名垂后世的重大科研成果。
孟德尔的这篇不朽论文虽然问世了,但令人遗憾的是,由于他那不同于前人的创造性见解,对于他所处的时代显得太超前了,竟然使得他的科学论文在长达35年的时间里,没有引起生物界同行们的注意。直到1900年,他的发现被欧洲三位不同国籍的植物学家在各自的豌豆杂交试验中分别予以证实后,才受到重视和公认,遗传学的研究从此也就很快地发展起来。
孟德尔的分离规律
豌豆具有一些稳定的、容易区分的性状,这很符合孟德尔的试验要求。所谓性状,即指生物体的形态、结构和生理、生化等特性的总称。在他的杂交试验中,孟德尔全神贯注地研究了7对相对性状的遗传规律。所谓相对性状,即指同种生物同一性状的不同表现类型,如豌豆花色有红花与白花之分,种子形状有圆粒与皱粒之分等等。为了方便和有利于分析研究起见,他首先只针对一对相对性状的传递情况进行研究,然后再观察多对相对性状在一起的传递情况。这种分析方法是孟德尔获得成功的一个重要原因。
1.显性性状与隐性性状
大家知道,孟德尔的论文的醒目标题是《植物杂交试验》,因此他所从事试验的方法,主要是“杂交试验法”。他用纯种的高茎豌豆与矮茎豌豆作亲本(亲本以P表示),在它们的不同植株间进行异花传粉。如图2-4所示高茎豌豆与矮茎豌豆异花传粉的示意图。结果发现,无论是以高茎作母本,矮茎作父本,还是以高茎作父本,矮茎作母本(即无论是正交还是反交),它们杂交得到的第一代植株(简称“子一代”,以F1表示)都表现为高茎。也就是说,就这一对相对性状而言,F1植株的性状只能表现出双亲中的一个亲本的性状——高茎,而另一亲本的性状——矮茎,则在F1中完全没有得到表现。
又如,纯种的红花豌豆和白花豌豆进行杂交试验时,无论是正交还是反交,F1植株全都是红花豌豆。正因为如此,孟德尔就把在这一对性状中,F1能够表现出来的性状,如高茎、红花,叫做显性性状,而把F1未能表现出来的性状,如矮茎、白花,叫做隐性性状。孟德尔在豌豆的其他5对相对性状的杂交试验中,都得到了同样的试验结果,即都有易于区别的显性性状和隐性性状。
2.分离现象及分离比
在上述的孟德尔杂交试验中,由于在杂种F1时只表现出相对性状中的一个性状——显性性状,那么,相对性状中的另一个性状——隐性性状,是不是就此消失了呢?能否表现出来呢?带着这样的疑问,孟德尔继续着自己的杂交试验工作。
孟德尔让上述F1的高茎豌豆自花授粉,然后把所结出的F2豌豆种子于次年再播种下去,得到杂种F2的豌豆植株,结果出现了两种类型:一种是高茎的豌豆(显性性状),一种是矮茎的豌豆(隐性性状),即:一对相对性状的两种不同表现形式——高茎和矮茎性状都表现出来了。孟德尔的疑问解除了,并把这种现象称为分离现象。不仅如此,孟德尔还从F2的高、矮茎豌豆的数字统计中发现:在1064株豌豆中,高茎的有787株,矮茎的有277株,两者数目之比,近似于3∶1。如图2-4A所示。
孟德尔以同样的试验方法,又进行了红花豌豆的F1自花授粉。在杂种F2的豌豆植株中,同样也出现了两种类型:一种是红花豌豆(显性性状),另一种是白花豌豆(隐性性状)。对此进行数字统计结果表明,在929株豌豆中,红花豌豆有705株,白花豌豆有224株,二者之比同样接近于3∶1。
孟德尔还分别对其他5对相对性状作了同样的杂交试验,其结果也都是如此。
我们概括上述孟德尔的杂交试验结果,至少有三点值得注意:
(1)F1的全部植株,都只表现某一亲本的性状(显性性状),而另一亲本的性状,则被暂时遮盖而未表现(隐性性状)。
(2)在F2里,杂交亲本的相对性状——显性性状和隐性性状又都表现出来了,这就是性状分离现象。由此可见,隐性性状在F1里并没有消失,只是暂时被遮盖而未能得以表现罢了。
(3)在F2的群体中,具有显性性状的植株数与具有隐性性状的植株数,常常表现出一定的分离比,其比值近似于3∶1。
3.对性状分离现象的解释
孟德尔对上述7个豌豆杂交试验结果中所反映出来的、值得注意的三个有规律的现象感到吃惊。事实上,他已认识到,这绝对不是某种偶然的巧合,而是一种遗传上的普遍规律,但对于3∶1的性状分离比,他仍感到困惑不解。经过一番创造性思维后,终于茅塞顿开,提出了遗传因子的分离假说,其主要内容可归纳为:
(1)生物性状的遗传由遗传因子决定(遗传因子后来被称为基因)。
(2)遗传因子在体细胞内成对存在,其中一个成员来自父本,另一个成员来自母本,二者分别由精卵细胞带入。在形成配子时,成对的遗传因子又彼此分离,并且各自进入到一个配子中。这样,在每一个配子中,就只含有成对遗传因子中的一个成员,这个成员也许来自父本,也许来自母本。
(3)在杂种F1的体细胞中,两个遗传因子的成员不同,它们之间是处在各自独立、互不干涉的状态之中,但二者对性状发育所起的作用却表现出明显的差异,即一方对另一方起了决定性的作用,因而有显性因子和隐性因子之分,随之而来的也就有了显性性状与隐性性状之分。
(4)杂种F1所产生的不同类型的配子,其数目相等,而雌雄配子的结合又是随机的,即各种不同类型的雌配子与雄配子的结合机会均等。
为了更好地证明分离现象,下面用一对遗传因子的图解来说明孟德尔的豌豆杂交试验及其假说,如图2-5所示。我们用大写字母D代表决定高茎豌豆的显性遗传因子,用小写字母d代表矮茎豌豆的隐性遗传因子。在生物的体细胞内,遗传因子是成对存在的,因此,在纯种高茎豌豆的体细胞内含有一对决定高茎性状的显性遗传因子DD,在纯种矮茎豌豆的体细胞内含有一对决定矮茎性状的隐性遗传因子dd。杂交产生的F1的体细胞中,D和d结合成Dd,由于D(高茎)对d(矮茎)是显性,故F1植株全部为高茎豌豆。当F1进行减数分裂时,其成对的遗传因子D和d又得彼此分离,最终产生了两种不同类型的配子。一种是含有遗传因子D的配子,另一种是含有遗传因子d的配子,而且两种配子在数量上相等,各占1/2。因此,上述两种雌雄配子的结合便产生了三种组合:DD、Dd和dd,它们之间的比接近于1∶2∶1,而在性状表现上则接近于3(高)∶1(矮)。
因此,孟德尔的遗传因子假说,使得豌豆杂交试验所得到的相似结果有了科学的、圆满的解释。
基因型与表现型我们已经看到,在上述一对遗传因子的遗传分析中,遗传下来的和最终表现出来的并不完全是一回事,如当遗传结构为DD型时,其表现出来的性状是高茎豌豆,而遗传结构为Dd型时,其表现出来的也是高茎豌豆。像这样,生物个体所表现出来的外形特征和生理特性叫做表现型,如高茎与矮茎,红花与白花;而生物个体或其某一性状的遗传基础,则被称为基因型,如高茎豌豆的基因型有DD和Dd两种,而矮茎豌豆的基因型只有dd一种。由相同遗传因子的配子结合成的合子发育而成的个体叫做纯合体,如DD和dd的植株;凡是由不同遗传因子的配子结合成的合子发育而成的个体则称为杂合体,如Dd。
基因型是生物个体内部的遗传物质结构,因此,生物个体的基因型在很大程度上决定了生物个体的表现型。例如,含有显性遗传因子D的豌豆植株(DD和Dd)都表现为高茎,无显性遗传因子的豌豆植株(dd)都表现为矮茎。由此可见,基因型是性状表现的内在因素,而表现型则是基因型的表现形式。
由以上分析我们还可知道,表现型相同,基因型却并不一定相同。例如,DD和Dd的表现型都是高茎,但其基因型并不相同,并且它们的下一代有差别:DD的下一代都是高茎的,而Dd的下一代则有分离现象——既有高茎,也有矮茎。
4.分离规律的验证
前面讲到孟德尔对分离现象的解释,仅仅建立在一种假说基础之上,他本人也十分清楚这一点。假说毕竟只是假说,不能用来代替真理,要使这个假说上升为科学真理,单凭其能清楚地解释他所得到的试验结果,那是远远不够的,还必须用实验的方法进行验证这一假说。下面介绍孟德尔设计的第一种验证方法,也是他用得最多的测交法。
测交就是让杂种子一代与隐性类型相交,用来测定F1的基因型。按照孟德尔对分离现象的解释,杂种子一代F1(Dd)一定会产生带有遗传因子D和d的两种配子,并且两者的数目相等;而隐性类型(dd)只能产生一种带有隐性遗传因子d的配子,这种配子不会遮盖F1中遗传因子的作用。所以,测交产生的后代应当一半是高茎(Dd)的,一半是矮茎(dd)的,即两种性状之比为1∶1。如图2-6所示测交实验的方法。
孟德尔用子一代高茎豌豆(Dd)与矮茎豌豆(dd)相交,得到的后代共64株,其中高茎的30株,矮茎的34株,即性状分离比接近1∶1,实验结果符合预先设想。对其他几对相对性状的测交试验,也无一例外地得到了近似于1∶1的分离比。
孟德尔的测交结果,雄辩地证明了他自己提出的遗传因子分离假说是正确的,是完全建立在科学的基础上的。
5.分离规律的实质
孟德尔提出的遗传因子的分离假说,用他自己所设计的测交等一系列试验,已经得到了充分的验证,亦被后人无数次的试验所证实,现已被世人所公认,并被尊称为孟德尔的分离规律。那么,孟德尔分离规律的实质是什么呢?
这可以用一句话来概括,那就是:杂合体中决定某一性状的成对遗传因子,在减数分裂过程中,彼此分离,互不干扰,使得配子中只具有成对遗传因子中的一个,从而产生数目相等的、两种类型的配子,且独立地遗传给后代,这就是孟德尔的分离规律。
孟德尔的自由组合规律
孟德尔在揭示了由一对遗传因子(或一对等位基因)控制的一对相对性状杂交的遗传规律——分离规律之后,这位才思敏捷的科学工作者,又接连进行了两对、三对甚至更多对相对性状杂交的遗传试验,进而又发现了第二条重要的遗传学规律,即自由组合规律,也有人称它为独立分配规律。这里我们仅介绍他所进行的两对相对性状的杂交试验。
1.杂交试验现象的观察
孟德尔在进行两对相对性状的杂交试验时,仍以豌豆为材料。他选取了具有两对相对性状差异的纯合体作为亲本进行杂交,一个亲本是结黄色圆形种子(简称黄色圆粒),另一亲本是结绿色皱形种子(简称绿色皱粒),无论是正交还是反交,所得到的F1全都是黄色圆形种子。由此可知,豌豆的黄色对绿色是显性,圆粒对皱粒是显性,所以F1的豌豆呈现黄色圆粒性状。
如果把F1的种子播下去,让它们的植株进行自花授粉(自交),则在F2中出现了明显的形状分离和自由组合现象。在共计得到的556粒F2种子中,有四种不同的表现类型.
如果以数量最少的绿色皱形种子32粒作为比例数1,那么F2的四种表现型的数字比例大约为9∶3∶3∶1。如图2-7所示豌豆种子两对相对性状的遗传实验。
从以上豌豆杂交试验结果看出,在F2所出现的四种类型中,有两种是亲本原有的性状组合,即黄色圆形种子和绿色皱形种子,还有两种不同于亲本类型的新组合,即黄色皱形种子和绿色圆形种子,其结果显示出不同相对性状之间的自由组合。
2.杂交试验结果的分析
孟德尔在杂交试验的分析研究中发现,如果单就其中的一对相对性状而言,那么,其杂交后代的显、隐性性状之比仍然符合3∶1的近似比值。
以上性状分离比的实际情况充分表明,这两对相对性状的遗传,分别是由两对遗传因子控制着,其传递方式依然符合于分离规律。
此外,它还表明了一对相对性状的分离与另一对相对性状的分离无关,二者在遗传上是彼此独立的。
如果把这两对相对性状联系在一起进行考虑,那么,这个F2表现型的分离比,应该是它们各自F2表现型分离比(3∶1)的乘积:这也表明,控制黄、绿和圆、皱两对相对性状的两对等位基因,既能彼此分离,又能自由组合。
3.自由组合现象的解释
那么,对上述遗传现象,又该如何解释呢?孟德尔根据上述杂交试验的结果,提出了不同对的遗传因子在形成配子中自由组合的理论。
因为最初选用的一个亲本——黄色圆形的豌豆是纯合子,其基因型为YYRR,在这里,Y代表黄色,R代表圆形,由于它们都是显性,故用大写字母表示。而选用的另一亲本——绿色皱形豌豆也是纯合子,其基因型为yyrr,这里y代表绿色,r代表皱形,由于它们都是隐性,所以用小写字母来表示。
由于这两个亲本都是纯合体,所以它们都只能产生一种类型的配子,即:
YYRR——YR
yyrr——yr
二者杂交,YR配子与yr配子结合,所得后代F1的基因型全为YyRr,即全为杂合体。由于基因间的显隐性关系,所以F1的表现型全为黄色圆形种子。杂合的F1在形成配子时,根据分离规律,即Y与y分离,R与r分离,然后每对基因中的一个成员各自进入到下一个配子中,这样,在分离了的各对基因成员之间,便会出现随机的自由组合,即:
(1) Y与R组合成YR;
(2)Y与r组合成Yr;(3)y与R组合成yR;
(4)y与r组合成yr。
由于它们彼此间相互组合的机会均等,因此杂种F1(YyRr)能够产生四种不同类型、相等数量的配子。当杂种F1自交时,这四种不同类型的雌雄配子随机结合,便在F2中产生16种组合中的9种基因型合子。由于显隐性基因的存在,这9种基因型只能有四种表现型,即:黄色圆形、黄色皱形、绿色圆形、绿色皱形。如图2-8所示它们之间的比例为9∶3∶3∶1。
这就是孟德尔当时提出的遗传因子自由组合假说,这个假说圆满地解释了他观察到的试验结果。事实上,这也是一个普遍存在的最基本的遗传定律,这就是孟德尔发现的第二个遗传定律——自由组合规律,也有人称它为独立分配规律。
4.自由组合规律的验证
与分离规律相类似,要将自由组合规律由假说上升为真理,同样也需要科学试验的验证。孟德尔为了证实具有两对相对性状的F1杂种,确实产生了四种数目相等的不同配子,他同样采用了测交法来验证。
把F1杂种与双隐性亲本进行杂交,由于双隐性亲本只能产生一种含有两个隐性基因的配子(yr),所以测交所产生的后代,不仅能表现出杂种配子的类型,而且还能反映出各种类型配子的比数。换句话说,当F1杂种与双隐性亲本测交后,如能产生四种不同类型的后代,而且比数相等,那么,就证实了F1杂种在形成配子时,其基因就是按照自由组合的规律彼此结合的。为此,孟德尔做了以下测交试验,如图2-9所示。
实际测交的结果,无论是正交还是反交,都得到了四种数目相近的不同类型的后代,其比数为1∶1∶1∶1,与预期的结果完全符合。这就证实了雌雄杂种F1在形成配子时,确实产生了四种数目相等的配子,从而验证了自由组合规律的正确性。
5.自由组合规律的实质
根据前面所讲的可以知道,具有两对(或更多对)相对性状的亲本进行杂交,在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这就是自由组合规律的实质。也就是说,一对等位基因与另一对等位基因的分离与组合互不干扰,各自独立地分配到配子中。
孟德尔遗传规律在理论和实践上的意义
孟德尔的分离规律和自由组合规律是遗传学中最基本、最重要的规律,后来发现的许多遗传学规律都是在它们的基础上产生并建立起来的,它犹如一盏明灯,照亮了近代遗传学发展的前途。
1.理论应用
从理论上讲,自由组合规律为解释自然界生物的多样性提供了重要的理论依据。大家知道,导致生物发生变异的原因固然很多,但是,基因的自由组合却是出现生物性状多样性的重要原因。比如说,一对具有20对等位基因(这20对等位基因分别位于20对同源染色体上)的生物进行杂交,F2可能出现的表现型就有220=1048576种。这可以说明现在世界生物种类为何如此繁多。当然,生物种类多样性的原因还包括基因突变和染色体变异,这在后面还要讲到。
分离规律还可帮助我们更好地理解为什么近亲不能结婚的原因。由于有些遗传疾病是由隐性遗传因子控制的,这些遗传病在通常情况下很少会出现,但是在近亲结婚(如表兄妹结婚)的情况下,他们有可能从共同的祖先那里继承相同的致病基因,从而使后代出现病症的机会大大增加。因此,近亲结婚必须禁止,这在我国婚姻法中已有明文规定。
2.实践应用
孟德尔遗传规律在实践中的一个重要应用就是在植物的杂交育种上。在杂交育种的实践中,可以有目的地将两个或多个品种的优良性状结合在一起,再经过自交,不断进行纯化和选择,从而得到一种符合理想要求的新品种。比方说,有这样两个品种的番茄:一个是抗病、黄果肉品种,另一个是易感病、红果肉品种,现在需要培育出一个既能稳定遗传,又能抗病,而且还是红果肉的新品种。你就可以让这两个品种的番茄进行杂交,在F2中就会出现既抗病又是红果肉的新型品种。用它作种子繁殖下去,经过选择和培育,就可以得到你所需要的能稳定遗传的番茄新品种。

孟德尔随机化之基础概念与研究框架

在本期中,我将说明孟德尔随机化的基础概念与研究框架,并解释如何使用孟德尔随机化去解决常规流行病学问题。

孟德尔随机化是在非实验数据中使用遗传变异来估计暴露和结句之间的因果关系。在这里,我们使用“暴露”一词来指代假定的因果风险因素,有时也称为中间表型,它可以是生物标志物(Biomarker)、人体测量指标(Physical

measurement)或任何其他可能影响结果的风险因素(Risk

factor)。通常情况下,结局是疾病,但并不局限于疾病。非实验数据涵盖了所有观察性研究,包括横断面和纵向,队列研究和病例对照研究究。

通常由于混淆,暴露与结果之间的观察联系有所不同,它们之间的相关性不能作为解释因果关系的可靠证据。例如,经常喝红酒的人心脏病的发病率较低,但社会经济状况是葡萄酒消费和改善冠状动脉健康的共同预测指标,因此可能是社会经济状况而非葡萄酒消费是心脏病风险的基础。与此同时,反向因果关系也可能产生观察联系,例如经常服用头痛药的人比没有服用头痛药的人头痛的可能性更大,但服用头痛药不大可能是头痛发生率增加的原因。孟德尔随机化的想法是找到与暴露有关的遗传变异(或多个变异),但与影响结果的任何其他风险因素无关,并且与结果不直接相关。这意味着遗传变异与结果之间的任何关联都必须通过变异与暴露之间的关联来进行,因此暗示了暴露对结果的因果关系,这样的遗传变异将满足工具变量(IV)的假设。

孟德尔随机化的定义是“使用遗传变异进行工具变量分析”。在孟德尔随机中,遗传变异被用作工具变量评估暴露对结局的因果效应,遗传变异满足工具变量的基本条件总结为:

(1) 遗传变异与暴露有关。

(2) 该遗传变异与暴露-结果关联的任何混杂因素均不相关。

(3) 该遗传变异不会影响结果,除非可能通过与暴露的关联来实现。

尽管孟德尔随机化分析通常涉及单个遗传变异,但可以将多个变异用作单独的IV或组合为单个IV。关于IV假设的更多细节,这是孟德尔随机研究有效性的关键,我将会在后续的内容中进行讲解。

在观察性研究中,暴露与结果之间可能存在相关性的原因之一是混杂因素的影响,即暴露的内生性。混杂被定义为暴露水平不同的群体之间存在固有差异,通常认为它是由人口中特定变量的分布(称为混杂因素)导致的。混杂因素是变量,是导致暴露和结果的共同原因。当进行多元回归分析时,由于存在未知或无法衡量的混杂因素或测量的混杂因素的不精确性,暴露和结果之间通常是因果效应的有偏估计。在分析中未经矫正的混杂称为“残留混杂”,而内生性意味着回归模型中的回归变量和误差项之间存在相关性。虽然在流行病学中很少使用“外生的”和“内生的”这两个词,但是这些术语具有严格的定义,可用于理解混杂。内生性的字面意思是“来自内部”,内源性的反面是外源性的;回归模型的外部变量“来自外部”。术语“内生性”包括混杂,但也包括传统上认为与混杂分离的现象,例如测量误差和反向因果关系。如果模型中的暴露是回归模型中的内源性变量,则因暴露对结局的因果效应将会有偏差。

IV可以理解为与内源性暴露相关的外生变量,用于估计在保持所有其他因素相同的情况下改变暴露的因果效应。孟德尔随机化也被称为“孟德尔解混杂”,因为它旨在给出因果关系的估计,而不会因混杂因素而产生偏差。危险因素之间的相关性使得在观察性研究中无法观察一个变量的增加,而使所有其他变量保持相等,因为一个因素的变化将始终伴随着其他因素的变化。尽管我们可以测量单个混杂因素并在分析中对其进行调整,但我们永远无法确定是否已精确识别或测量了所有混杂因素,从而导致残留混杂。另外,如果我们调整一个变量,该变量位于感兴趣的暴露和结果之间的真正因果关系路径上(一个中介),则这表示过度调整并削弱了因果效应的估计值。通过找到满足IV假设的遗传变异,我们可以估计暴露与结果之间的无混杂因素的关联。

孟德尔随机化类似于随机对照试验(RCT),而被认为是提供医学证据“黄金标准”的RCT,涉及将一组个体以随机方式分为两个或多个亚组,这些亚组分别接受不同的治疗。与所有其他分配给子组相比,随机化更为可取,因为所有可能的混杂因素(已知和未知)平均在子组之间保持平衡。在孟德尔随机化中,我们使用遗传变异来形成与RCT中相似的亚组,如图所示。

从前述的IV假设来看,这些亚组在暴露因素中存在明显差异,但除了因果关系“下游”的那些因素外,没有其他任何因素有差异,故这些亚组之间结局的差异将表明暴露对结局的因果关系。一个人的遗传变异是从其父母那里继承的,因此不会随机分配。例如,如果一个人的父母都不携带特定的基因突变,则该人将无法携带该突变。但是,在现实的条件下,可以将人口中遗传变异的分布视为可能是重要混杂因素的环境和社会因素的随机分布,要使变体随机分布的必要假设是随机交配,并且缺乏与目标变体相关的选择效应。尽管这些假设会有所不同,但研究表明,大多数遗传变异在整个人群中的分布相当均匀,至少在西欧的情况下如此。我们可以通过进行哈迪-温伯格平衡检验来评估是否有可能偏离遗传变异的随机交配假设,以判断种群中杂合子和纯合子的频率是否符合期望。尽管分配中没有真正的随机性,但仍将其该种分配成为准随机化。大多数自然实验都依赖于准随机化,而不是实验单元的严格随机化。最近的一项观察性研究表明,线性回归在所有96个非遗传变量之间构成的4560个关联中,有45%的p值小于0.01。这为以下假设提供了合理性:用作工具变量的遗传变异将独立于许多潜在的混杂因素,因此在许多情况下,分配给遗传亚组可被视为类似于RCT中的随机分配。但是,孟德尔随机化从另一个方面与随机试验不同。孟德尔随机化的目的不是估计遗传效应的大小,而是估计暴露对结果的因果效应,所以与遗传变异相关的结局的平均变化幅度可能与干预措施导致的变化幅度不同。另外,即使遗传变异与结果之间的关联程度很小,暴露的人群归因风险也不一定很低,因为暴露可能会以比遗传变异解释更大的变化程度。例如,他汀类药物对低密度脂蛋白胆固醇水平的影响比低密度脂蛋白胆固醇水平与HMGCR基因变异的关联要大几倍,因此对后续结果的影响更大。

尽管使用孟德尔随机化的主要原因是为了避免残留混杂问题,但在特定情况下使用孟德尔随机化还有其他原因:病例对照数据和难以衡量的暴露水平。

当暴露与结果之间的关联不是由于暴露导致结果变化,而是由于结果导致暴露变化时,则发生反向因果关系。如果暴露是对临床前疾病的响应而增加的,则可能发生这种情况,比如在冠心病可在临床表现之前因动脉粥样硬化而暴露。由于个体的基因型是在受孕时确定的,因此无法更改,因此不会存在因果关系与基因型相关联的反向因果关系,这也是孟德尔随机化的优势。在某些情况下,也就是在已经经历过结果事件的个人中,许多感兴趣的风险无法可靠地衡量,因为该事件可能会使衡量结果失真。在这种情况下,可以将遗传变异用作暴露的代理,并且可以追溯评估与结果的遗传关联。由于可以在患病的个体中测量个体的基因型,因此可以在病例对照的情况下使用孟德尔随机化获得因果推论。

当感兴趣的曝光量昂贵或难以测量时,孟德尔随机化可能是一种有用的技术。例如,用于生物标记物(例如水溶性维生素)的金标准测定可能花费太多,以至于无法用于大样本,或者测量需要隔夜禁食的空腹血糖可能是不切实际的。如果遗传变异与暴露相关(可以在子样本或单独的数据集中进行验证)并且是有效的暴露IV,则可以通过遗传变异与遗传之间的关联来推断暴露与结果之间的因果关系。即使没有测量暴露量也可以得出结果。此外,工具变量估计值不会因暴露中的经典测量误差(包括个体内部差异)而衰减。这与观察性研究相反,在观察性研究中,暴露中的测量误差通常会导致回归系数朝着零值的方向衰减(称为回归稀释偏差)。另一个例子是,危险因素不仅难以度量,而且难以定义。例如,IL6R基因区域的一个变异与血清白介素6浓度(以及下游炎症标记物的水平,包括C反应蛋白和纤维蛋白原)有关,被证明与冠心病(CHD)风险有关。但是,从对遗传变异功能的了解中,我们认为所评估的因果作用不是通过升高的血清白介素6浓度来实现的,而是通过白介素6受体途径中信号传导的改变来实现的,而这是一种随时间变化的细胞表型,因此对个体的代表性测量值并不容易确定。但是,由于可以测量遗传变异,因此可以通过孟德尔随机评估来评估白介素6受体相关途径对冠心病风险的因果作用。
文章标题: 有大神可以科普一下孟德尔吗
文章地址: http://www.xdqxjxc.cn/jingdianwenzhang/174461.html
文章标签:孟德尔  大神  科普
Top