欢迎访问喜蛋文章网
你的位置:首页 > 经典文章 > 文章正文

应该如何理解热力学第二定律的这两种表述

时间: 2023-03-22 22:00:42 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 112次

应该如何理解热力学第二定律的这两种表述

如何理解热力学第二定律

用反证法。两条绝热线如果能相交,再加上一条等温线就可以组成一个循环(闭合曲线)。这个循环只在等温过程从单一热源吸热,然后对外做功,显然违反了热力学第二定律。

所以,两条绝热线不可能相交。

扩展资料:

热力学第二定律克劳修斯表述为:热量不能自发地从低温物体转移到高温物体。开尔文表述为:不可能从单一热源取热使之完全转换为有用的功而不产生其他影响。熵增原理:不可逆热力过程中熵的微增量总是大于零。在自然过程中,一个孤立系统的总混乱度(即“熵”)不会减小。

1824年,法国工程师萨迪·卡诺提出了卡诺定理。德国人克劳修斯(Rudolph Clausius)和英国人开尔文(Lord Kelvin)在热力学第一定律建立以后重新审查了卡诺定理,意识到卡诺定理必须依据一个新的定理,即热力学第二定律。他们分别于1850年和1851年提出了克劳修斯表述和开尔文表述。这两种表述在理念上是等价的。

热力学第二定律说明:热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物体(克劳修斯表述);也可表述为:两物体相互摩擦的结果使功转变为热,但却不可能将这摩擦热重新转变为功而不产生其他影响。

对于扩散、渗透、混合、燃烧、电热和磁滞等热力过程,虽然其逆过程仍符合热力学第一定律,但却不能自发地发生。热力学第一定律未解决能量转换过程中的方向、条件和限度问题,这恰恰是由热力学第二定律所规定的。

参考资料来源:百度百科-热力学第二定律

热力学第二定律怎样理解?

1.在孤立系中,能量总是从有序到无序。表明了一种能量的自发的衰减过程。用熵来描述混乱的状态。

2.在热力学中具体还需要参看克劳修斯和凯尔文的解释。

开尔文表述:不可能从单一热源吸取热量,使之完全变为有用功而不引起其它变化。

克劳修斯表述:不可能使热量从低温物体传向高温物体而不引起其它变化。

3.在热力学中主要揭示热机效率的问题。在其他方面,如进化论的证明方面也起作用。

用生动的语句描述就是:你用餐后总是会花费的比你实际吃的要多。

扩展资料:

①热力学第二定律是热力学的基本定律之一,是指热永远都只能由热处转到冷处(在自然状态下)。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。

指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。要使热传递方向倒转过来,只有靠消耗功来实现。

自然界中任何形式的能都会很容易地变成热,而反过来热却不能在不产生其他影响的条件下完全变成其他形式的能,从而说明了这种转变在自然条件下也是不可逆的。

热机能连续不断地将热变为机械功 ,一定伴随有热量的损失。第二定律和第一定律不同,第一定律否定了创造能量和消灭能量的可能性,第二定律阐明了过程进行的方向性,否定了以特殊方式利用能量的可能性。 

②人们曾设想制造一种能从单一热源取热,使之完全变为有用功而不产生其他影响的机器,这种空想出来的热机叫第二类永动机。它并不违反热力学第一定律,但却违反热力学第二定律。

③从分子运动论的观点看,作功是大量分子的有规则运动,而热运动则是大量分子的无规则运动。显然无规则运动要变为有规则运动的几率极小,而有规则的运动变成无规则运动的几率大。

一个不受外界影响的孤立系统,其内部自发的过程总是由几率小的状态向几率大的状态进行,从此可见热是不可能自发地变成功的。

④热力学第二定律只能适用于由很大数目分子所构成的系统及有限范围内的宏观过程。而不适用于少量的微观体系,也不能把它推广到无限的宇宙。

⑤根据热力学第零定律,确定了态函数——温度;

根据热力学第一定律,确定了态函数——内能和焓;

根据热力学第二定律,也可以确定一个新的态函数——熵。可以用熵来对第二定律作定量的表述。

热力学第零定律用来作为进行体系测量的基本依据,其重要性在于它说明了温度的定义和温度的测量方法。表述如下:

1、可以通过使两个体系相接触,并观察这两个体系的性质是否发生变化而判断这两个体系是否已经达到热平衡。

2、当外界条件不发生变化时,已经达成热平衡状态的体系,其内部的温度是均匀分布的,并具有确定不变的温度值。

3、一切互为平衡的体系具有相同的温度,所以一个体系的温度可以通过另一个与之平衡的体系的温度来表示,也可以通过第三个体系的温度来表示。

参考资料:百度百科——热力学第二定律

开尔文表述:不可能从单一热源吸取热量,使之完全转变为有用功而不产生其它影响。这个表述透彻理解稍有难度。所谓单一热源,就是一个温度处处相等并且恒温的热库(热容量极大,不因吸放热而改变它的温度)。

换句话可以这么说,要使热变成功又不产生其它影响,那么(系统、即工作物质)一定要与两个或以上的热源交换热量,即从高温热源吸热,将其中的一部分变为功,另一部分仍以热的形式放出系统(至低温热源)。

任何的热机都是这样工作的,热机经历一个工作循环后系统和外界(两个或更多热源)总的看来,除了有热变功以外,没有其它任何变化。这就表明热机的效率(不是机械效率,而是热功转化效率)不可能是100%(即便没有摩擦没有因漏气等因素存在的散热)。

再换句话说,如果是100%(只吸热、不放热,吸的热全部变功),必然只涉及一个单一热源(假定有两个温度不同的热源与系统热交换,系统必然会从高温处吸热,低温处放热),从而与开表述矛盾。

要使热机能够循环工作,向低温热源放热是必不可少的,不可避免的,这是大量实践证明的,开尔文正是将热机工作中这一规律用更准确的更普遍(也更抽象)的语言表述出来,才得到了热二律的开尔文表述(表述中并未涉及热机的字样,说明这个表述不仅的适用于热机还适用于任意的宏观过程)。

开尔文表述还可以换成另一种表达:从单一热源吸取热量,使之完全转变为有用功,必定会产生其它影响。

例如理想气体等温膨胀,过程中气体仅从一个热源吸热,而没有放热,理想气体等温膨胀,内能不变,故吸热全部变功,然而过程中除了热功转化外,还发生了其他变化,(气体体积变大了,压强变小了)。

要使这个变化不发生,又要将热量全部变功(即效率100%),那就是不可能的。怎样才能让这个变化不发生呢?

系统必须经历一个循环过程(经过一个循环系统体积、压强又复原了),任何热机想要连续工作(而不是膨胀一下就停止,这样的“一锤子买卖”),必须经历循环过程,而循环过程系统不可避免要与两个或以上温度不同的热源交换热量(高温处吸热,低温处放热,一条等温线不可能构成循环)。

拓展知识:

热力学三大定律:

热力学第一定律是能量守恒定律。

2.热力学第二定律有几种表述方式:

克劳修斯表述为热量可以自发地从温度高的物体传递到温度低的物体,但不可能自发地从温度低的物体传递到温度高的物体;

开尔文-普朗克表述为不可能从单一热源吸取热量,并将这热量完全变为功,而不产生其他影响。以及熵增表述:孤立系统的熵永不减小。

3.热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零, 或者绝对零度(T=0K)不可达到。

第一,热力学第二定律的表述(说法)虽然繁多,但都反映了客观事物的一个共同本质,即自然界的一切自发过程都有“方向性”,并且一切自发过程都是不可逆的。
第二,热力过程的方向性,是可以用“熵”来衡量的,也即孤立系的一切实际过程,其总熵是增加的,理想条件下(即可逆),总熵不变。
现以最常见的热力学二种说法进行理解。
1、克劳修斯说法(1850年):热不可能自发地、不付代价地从低温物体传到高温物体。
解释:
(1)这里需要强调的是“自发地、不付代价地”。我们通过热泵装置是可以实现“将热从低温物体传向高温物体的”,但这里是付出代价的,即以驱动热泵消耗功为代价,是“人为”的,是“强制”的,不是“自发”的。所以,非自发过程,如热从低温物体传向高温物体,必须同时要有一个自发过程为代价(这里是机械能转化为热能)为补偿,这个过程叫“补偿过程”。
(2)非自发过程(如热从低温物体传向高温物体)能否进行,还要看花的“代价”是否够,就是总系统(孤立系)的熵必须是增加的,或可逆下总熵不变。也就是说,如果投入的“代价”不够的话,非自发过程是不能进行的,或是进行得不够彻底(不能达到预计的状态)。孤立系总熵变不小于零,非自发过程才有可能进行。

2、开尔文-普朗特说法(1851年):不可能制造出从单一热源吸热,使之全部转化为功而不留下其他任何变化的热力发电机。
解释:
(1)这里强调的是“不留下其他任何变化”,是指对热机内部、外界环境及其他所有(一切)物体都没有任何变化。
开尔文-普朗特说法说明了热转化为功,必须要将一部分热量转给低温物体(注意,这可是一个自发过程,高温向低温传热哦),也即必须要有一个“补偿过程”为代价。
(2)热全部转化为功,是可以的,但必须要“留下其他变化”。如等温过程中,热可以全部转变成功,但这时热机内部工质的“状态”变了(即工质不能回到初始状态。其实,这样的热机实际上是不存在的),是留下了变化的。

总之,要正确理解热力学第二定律,以下几点是需要把握的:

1、上述热力学第二定律的两种表述及其等效性;
2、卡诺循环与卡诺定理、卡诺效率,且 ηT≤ ηC;
3、克劳修斯积分等式和不等式;
4、熵的过程方程式:dS≥dQ/Tr;
5、孤立系统熵增原理:△Siso=∑△Si=Sg≥0;
6、闭口系(控制质量)熵方程:dS=dSg+dQ/Tr;(开口系也要掌握好)
7、能量贬值原理:dEx,iso≤0;
8、熵产与机械能(火用)的损失关系:I=To×Sg 。
1.在孤立系中,能量总是从有序到无序。表明了一种能量的自发的衰减过程。用熵来描述混乱的状态。请参看熵的定义。
2.在热力学中具体还需要参看克劳修斯和凯尔文的解释。
开尔文表述:不可能从单一热源吸取热量,使之完全变为有用功而不引起其它变化。
克劳修斯表述:不可能使热量从低温物体传向高温物体而不引起其它变化。
3.在热力学中主要揭示热机效率的问题。在其他方面,如进化论的证明方面也起作用。

用生动的语句描述就是:你用餐后总是会花费的比你实际吃的要多。
热力学第二定律存在一个严重缺陷,只是以前人们没有发现而已, 直接通过逻辑推理就能够证明热力学第二定律错误。我觉得通过逻辑形式的方式证明热力学第二定律错误就和伽里略发现运动学原理很相象。如果一个理论在逻辑形式上表达出现错误,那就难以成立。

什么是热力学第二定律?

热力学第二定律是阐明与热现象相关的各种过程进行的方向、条件及限度的定律。

热力学第二定律指明了自然界的热功转化中的普遍规律,即热不可能全部转化为功,而不引起其它变化。

热力学第二定律,指出了热功转化的效率的问题。即,热机的效率不可能达到100%. 所以常说的“第二类永动机无法实现”中的第二类永动机就是指热机效率为100%的热机。

扩展资料

热力学第二定律是从经验中得到的,它有几种表述方式。一般的表述为:任何一个宏观过程向相反方向进行而不引起其它变化是不可能的。我们来看一下其它的表述方式:

1850年克劳修斯根据热传导的逆过程的不可能性提出:不可能把热量从低温物体传到高温物体而不引起其它变化;

1851年开尔文根据摩擦生热的逆过程不可能性提出一个说法:不可能从单一热源取热使它全部变成功而不引起其它变化;

奥斯特瓦尔德提出另外一个重要的说法:第二类永动机是不可能实现的。所谓的第二类永动机是指一个热机仅从单一热源吸收热而转变成功,而无其它变化。

参考资料来源:百度百科-热力学定律

如何理解热力学第二定律两种表述的一致性?

      热力学第二定律有多种表述,但最具代表性的有两种,即开尔文表述和克劳修斯表述. 1.开尔文表述英国物理学家开尔文(1824~1907),1845年毕业于剑桥大学,1846年受聘为格拉斯哥大学自然哲学教授,长达50余年,1851年被选为英国皇家学会会员,1877年被选为法国科学院院士,1890年至1895年担任皇家学会会长,他对热学和电磁学的发展都作出了重要的贡献. 1851年开尔文在爱丁堡皇家学会会刊上发表了一篇论文,题目是“论热的动力理论”,文章指出:不存在这样一个循环过程,系统从单一热源吸收热量,使之完全变为有用功而不产生其他影响.表述中“单一热源”是指温度均匀且恒定的热源;“其他影响”指除了由单一热源吸热,把吸收的热用来做功以外的任何其他变化.若有其他影响产生时,把由单一热源吸来的热量全部用以对外做功是可能的.自然界任何形式的能都可能转化为热,但热却不能在不产生其他影响的条件下完全转变成其他形式的能.开尔文的论述虽然较克劳修斯晚一年,但他的论述更为明确,使得热力学第二定律的研究更加深入,此外,开尔文还从第二定律断言:能量耗散是普遍趋势. 2.克劳修斯表述 德国物理学家克劳修斯(1822~1888),曾在柏林大学学习4年,后于1848年毕业于哈雷大学.1850年他任柏林皇家炮工学校物理教授,1855年后他相继任苏黎士维尔茨堡和波恩大学物理教授.他除了建立热力学第二定律,引入态函数——熵,还对气体分子动理论做了较全面的论述,用统计平均的方法导出了理想气体的压强、温度和气体的平均自由程公式. 克劳修斯于1850年在《德国物理学年鉴》上率先发表了《论热的动力及能由此推出的关于热本质的定律》,把卡诺定理作了扬弃而改造成与热力学第一定律并列的热力学第二定律.他提出,热量总是自动地从高温物体传到低温物体,不可能自动地由低温物体向高温物体传递.或者说不可能把热量从低温物体传到高温物体,而不引起其他变化.即在自然条件下,这个转变过程是不可逆的,若想让热传递的方向逆转,则必须消耗功才能实现. 以上两种表述是等效的,说明了热量不可能全部转化为机械功以及这一转化过程的方向性.人们一度曾设想一种能从单一热源吸收热量,使之完全转变成有用的机械功而不产生其他影响的第二类永动机,第二类永动机虽不违背热力学第一定律,但违背热力学第二定律,因而是不可能造成的.第二定律除了以上两种表述外,还有其他不同的表述,例如热效率为100%的热机是不可能制成的;不需要由外加功而可操作致冷的机器是不可能造成的等.第二定律无论采用何种表述,其内容实质相同,不外乎主张不可逆变化的存在.各种表述的实质在于说明一切与热现象有关的实际宏观过程都是不可逆的.

热力学第二定律的两种表述是什么?微观统计意义是什么

热力学第二定律(second law of thermodynamics),热力学基本定律之一,其表述为:不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微增量总是大于零。又称“熵增定律”,表明了在自然过程中,一个孤立系统的总混乱度(即“熵”)不会减小。

克劳修斯表述

不可能把热量从低温物体传向高温物体而不引起其它变化。

开尔文表述

不可能制成一种循环动作的热机,从单一热源取热,使之完全变为功而不引起其它变化。

孤立系统的一切自发过程均向着其微观状态更无序的方向发展,如果要使系统回复到原先的有序状态是不可能的,除非外界对它做功。另外,微观状态越混乱,则该系统的熵值越大,反之越小。所以说,孤立系统的熵值是永远增加的。

微观意义就是系统总是朝着混乱度增加的方向发展。

 

热力学第二定律有两种基本表述,第一种是(1)克劳休斯表述:不可能把热量从低温物体传向高温物体而不引起其它变化;第二种是(2)开尔文表述:不可能制成一种循环动作的热机,从单一热源取热,使之完全变为功而不引起其它变化。开尔文表述还可以表述成:第二类永动机不可能实现。

除此之外,热力学第二定律还可以表述成熵增加原理:孤立系统的熵永不自动减少,熵在可逆过程中不变,在不可逆过程中增加。

从微观统计意义上讲,热运动则是大量分子的无规则运动。无规则运动要变为有规则运动的几率极小,而有规则的运动变成无规则运动的几率大。一个不受外界影响的孤立系统,其内部自发的过程总是由几率小的状态向几率大的状态进行,从此可见热是不可能自发地变成功的。
微观统计的意义就是系统混乱度的数学意义。就是混乱度取自然对数。
文章标题: 应该如何理解热力学第二定律的这两种表述
文章地址: http://www.xdqxjxc.cn/jingdianwenzhang/166504.html
文章标签:热力学  这两种  表述  定律  理解
Top