欢迎访问喜蛋文章网
你的位置:首页 > 经典文章 > 文章正文

高中物理电磁学有哪些考点

时间: 2022-12-06 17:59:55 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 111次

高中物理电磁学有哪些考点

物理电磁学知识点总结

  电磁学是物理学的一个分支,起源于近代。广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。下面是我为你整理的物理电磁学知识点,一起来看看吧。

  物理电磁学知识点

  一、磁现象

  最早的指南针叫司南。

  磁性:磁体能够吸收钢铁一类的物质。

  磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间最弱。水平面自由转动的磁体,静止时指南的磁极叫南极(S极),指北的磁极叫北极(N极)。

  磁极间的作用规律:同名磁极相互排斥,异名磁极相互吸引。一个永磁体分成多部分后,每一部分仍存在两个磁极。

  磁化:使原来没有磁性的物体获得磁性的过程。

  钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。钢被磁化后,磁性能长期保持,称为硬磁性材料。所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁。磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成异名磁极,异名磁极相互吸引的结果。

  物体是否具有磁性的判断方法:

  ①根据磁体的吸铁性判断。

  ②根据磁体的指向性判断。

  ③根据磁体相互作用规律判断。

  ④根据磁极的磁性最强判断。磁性材料在现代生活中已经得到广泛应用,音像磁带、计算机软盘上的磁性材料就具有硬磁性。

  二、磁场

  磁场:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。磁场看不见、摸不着我们可以根据它对其他物体的作用来认识它。这里使用的是转换法。(认识电流也运用了这种方法。)

  磁场对放入其中的磁体产生力的作用。磁极间的相互作用是通过磁场而发生的。

  磁场的方向规定:在磁场中的某一点,小磁针静止时北极所指的方向,就是该点磁场的方向。

  磁感线:在磁场中画一些有方向的曲线。任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致。磁感线的方向:在用磁感线描述磁场时,磁感线都是从磁体的N极出发,回到磁体的S极。

  说明:

  ①磁感线是为了直观、形象地描述磁场而引入的带方向的曲线,不是客观存在的。但磁场客观存在.

  ②磁感线是封闭的曲线。

  ③磁感线的疏密程度表示磁场的强弱。

  ④磁感线立体的分布在磁体周围,而不是平面的。

  ⑤磁感线不相交。

  地磁场:在地球周围的空间里存在的磁场,磁针指南北是因为受到地磁场的作用。地磁极:地磁场的北极在地理的南极附近,地磁场的南极在地理的北极附近。磁偏角:地理的两极和地磁的两极并不不重合,这个现象最先由我国宋代的沈括发现。

  三、电生磁

  电流的磁效应通电导线的周围存在磁场,磁场的方向跟电流的方向有关,这种现象称为电流的磁效应。该现象在1820年被丹麦的物理学家奥斯特发现。奥斯特是世界上第一个发现电与磁之间有联系的人。

  通电螺线管的磁场通电螺线管的磁场和条形磁铁的磁场一样。其两端的极性跟电流方向有关,电流方向与磁极间的关系可由安培定则来判断。

  安培定则:用右手握螺线管,让四指指向螺线管中电流的方向,则大拇指所指的那端就是螺线管的N极。

  四、电磁铁

  电磁铁在螺线管内插入软铁芯,当有电流通过时有磁性,没有电流时就失去磁性。这种磁体叫做电磁铁。

  工作原理:电流的磁效应。

  影响电磁铁磁性强弱的因素:电流越大,电磁铁的磁性越强;线圈匝数越多,电磁铁的磁性越强;插入铁芯,电磁铁的磁性会更强。

  特点:其磁性的有无可由通断电流来控制;其磁极方向可以通过改变电流方向来改变;其磁性强弱与电流大小、线圈匝数、有无铁芯有关。

  电磁铁的应用:电磁起重机、电磁继电器。

  五、电磁继电器、扬声器

  电磁继电器是利用低电压、弱电流电路的通断,来间接地控制高电压、强电流电路的装置。

  电磁继电器:实质是由电磁铁控制的开关。应用:用低电压弱电流控制高电压强电流,进行远距离操作和自动控制。

  扬声器是把电信号转换成声信号的一种装置。它主要由永久磁体、线圈和锥形纸盆组成。

  六、电动机

  磁场对通电导线的作用通电导线在磁场中要受到力的作用,力的方向跟电流的方向、磁感线的方向都有关系。当电流的方向或者磁感线的方向变得相反时,通电导线受力的方向也变得相反。

  电动机主要由转子和定子组成。电动机是利用通电线圈在磁场里受力而转动的原理制成的。电动机在工作时,线圈转到平衡位置的瞬间,线圈中的电流断开,但由于线圈的惯性,线圈还可以继续转动,转过此位置后,线圈中的电流方向靠换向器的作用而发生改变。

  电动机工作时,把电能转化为机械能。电动机构造简单控制方便、体积小、效率高、功率可大可小。

  七、磁生电

  电磁感应由于导体在磁场中运动而产生电流的现象,叫做电磁感应现象,产生的电流叫做感应电流。英国物理学家法拉第于1831年发现了利用磁场产生电流的条件和规律。产生感应电流的条件:闭合电路的部分导体在磁场中做切割磁感线的运动。

  导体中感应电流的方向:跟导体运动的方向和磁感线的方向有关。

  发电机主要由转子和定子组成。发电机的工作原理:电磁感应现象。发电机在发电的过程中,把机械能转化为电能。方向不断变化的电流叫交变电流,简称交流(AC)。我国电网以交流供电,频率是50Hz,周期0.02s,电流方向1s改变100次。

  电磁学物理发展

  电磁波的发现由于历史上的原因(最早,磁曾被认为是与电独立无关的现象),同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,而磁学在实际上也就作为一门和电学相平行的学科来研究。

  麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。

  和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。关于相对论和量子理论对电磁学发展的影响,见相对论电动力学、量子电动力学。

  麦克斯韦《电磁论》发表后,由于理论难懂,无实验验证,在相当长的一段时间里并未受到重视和普遍承认。1879年,柏林科学院设立了有奖征文,要求证明以下三个假设:①如果位移电流存在,必定会产生磁效应;②变化的磁力必定会使绝缘体介质产生位移电流;③在空气或真空中,上述两个假设同样成立。这次征文成为赫兹进行电磁波实验的先导。

  1885年,赫兹利用一个具有初级和次级两个绕组的振荡线圈进行实验,偶然发现:当初级线圈中输入一个脉冲电流时,次级绕组两端的狭缝中间便产生电火花,,赫兹立刻想到,这可能是一种电磁共振现象。既然初级线圈的振荡电流能够激起次级线圈的电火花,那么它就能在邻近介质中产生振荡的位移电流,这个位移电流又会反过来影响次级绕组的电火花发生的强弱变化。

  1886年,赫兹设计了一种直线型开放振荡器留有间隙的环状导线C作为感应器,放在直线振荡器AB附近,当将脉冲电流输入AB并在间隙产生火花时,在C的间隙也产生火花。实际这就是电磁波的产生、传播和接收。

  证明电磁波和光波的一致性:1888年3月赫兹对电磁波的速度进行了测定,并在论文《论空气中的电磁波和它们的反射》介绍了测定方法:赫兹利用电磁波形成的驻波测定相邻两个波节间的距离(半波长),再结合振动器的频率计算出电磁波的速度。他在一个大屋子的一面墙上钉了一块铅皮,用来反射电磁波以形成驻波。在相距13米的地方用一个支流振动器作为波源。用一个感应线圈作为检验器,沿驻波方向前后移动,在波节处检验器不产生火花,在波腹处产生的火花最强。用这个方法测出两波节之间的长度,从而确定电磁波的速度等于光速。1887年又设计了“感应平衡器”:即将1886年的装置一侧放置了一块金属板D,然后将C调远使间隙不出现火花,再将金属板D向AB和C方向移动,C的间隙又出现电火花。这是因为D中感应出来的振荡电流产生一个附加电磁场作用于C,当D靠近时,C的平衡遭到破坏。 这一实验说明:振荡器AB使附近的介质交替极化而形成变化的位移电流,这种位移电流又影响“感应平衡器C”的平衡状态。使C出现电火花。当D靠近C时,平衡状态再次被破坏,C再次出现火花。从而证明了“位移电流”的存在。

  赫兹又用金属面使电磁波做45°角的反射;用金属凹面镜使电磁波聚焦;用金属栅使电磁波发生偏振;以及用非金属材料制成的大棱镜使电磁波发生折射等。从而证明麦克斯韦光的电磁理论的正确性。至此麦克斯韦电磁场理论才被人们承认。麦克斯韦因此被人们公认是“自牛顿以后世界上最伟大的数学物理学家”。至此由法拉第开创,麦克斯韦建立,赫兹验证的电磁场理论向全世界宣告了它的胜利。

  电磁学创始任务

  麦克斯韦是19世纪伟大的英国物理学家,经典电动力学的创始人,统计物理学的奠基人之一。

  麦克斯韦1831年6月13日出生于爱丁堡。16岁时进入爱丁堡大学,三年后转入剑桥大学学习数学,1854年毕业并留校任教,两年后到苏格兰的马里沙耳学院任自然哲学教授,1860年到伦敦国王学院任教,1871年受聘筹建剑桥大学卡文迪什实验室,并任第一任主任。1879年11月5日在剑桥逝世。

  麦克斯韦集成并发展了法拉第关于电磁相互作用的思想,并于1865年发表了著名的《电磁场动力学理论》的论文,将所有电磁现象概括为一组偏微分方程组,预言了电磁波的存在,并确认光也是一种电磁波,从而创立了经典电动力学。麦克斯韦还在气体运动理论、光学、热力学、弹性理论等方面有重要贡献。

物理电磁学知识点有哪些?

电磁学是研究电、磁、二者相互作用现象,及其规律和应用的物理学分支学科。根据近代物理学的观点,磁的现象是由运动电荷所产生的,因而在电学的范围内必然不同程度地包含磁学的内容。

电磁学从原来互相独立的两门科学发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。

物理发展

电磁波的发现由于历史上的原因,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,而磁学在实际上也就作为一门和电学相平行的学科来研究。

麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。

和电磁学密切相关的学科是经典电动力学,两者在研究对象和内容上并没有原则的区别。一般说来,电磁学偏重于经典电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律,最后总结出麦克斯韦方程组。

而经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力(逻辑上相当于牛顿力学中牛顿的三个运动定律)为基础,研究宏观尺度下电磁场分布,电磁波的激发和传播,以及带电粒子与电磁场的相互作用等电磁问题。

高中物理电磁学复习时应注意哪些知识点?请具体列举一下。

1.电磁感应现象
利用磁场产生电流的现象叫做电磁感应产生的电流叫做感应电流。
2.产生感应电流的条件
①当闭合电路的一部分导体在磁场里做切割磁感线的运动时,电路中产生了感应电流。
②当磁体相对静止的闭合电路运动时,电路中产生了感应电流.
③当磁体和闭合电路都保持静止,而使穿过闭合电路的磁通量发生改变时,电路中产生了感应电流.
其实上述①、②两种情况均可归结为穿过闭合电路的磁通量发生改变,所以,不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生.
3.电磁感应现象中的能量守恒
电磁感应现象中产生的电能不是凭空产生的,它们或者是其他形式的能转化为电能,或者是电能在不同电路中的转移,电磁感应现象遵循能量守恒定律.
左手、右手定理要分清

磁感线永远是封闭的

除非单独提出来,否则所有东西都是超导体,没有电阻

至少熟记那几个公式中的一个
文章标题: 高中物理电磁学有哪些考点
文章地址: http://www.xdqxjxc.cn/jingdianwenzhang/158210.html

[高中物理电磁学有哪些考点] 相关文章推荐:

    Top