欢迎访问喜蛋文章网
你的位置:首页 > 经典文章 > 文章正文

python可视化怎么做图啊

时间: 2022-11-09 01:00:46 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 92次

python可视化怎么做图啊

Python数据可视化利器Matplotlib从入门到高级4

2D曲线绘制是Matplotlib绘图的最基本功能,也是用得最多、最重要的绘图功能之一,本文开始详细介绍Matplotlib 2D曲线绘图功能。我的介绍主要以面向对象的编码风格为主,但会在文章的末尾附上相应的pyplot风格的源代码,供大家查阅、对比。我们先看一段代码:

代码运行效果如下:

这个绘图中我们没有作任何设置,一切交给Matplotlib处理。我们只是看到了绘制出的曲线的样子。但这与我们所想要的效果可能差异较大。所以我们还需要对图形进行一些自定义。

不管我们想生成什么样的图形,在Matplotlib当中,大致都可以总结为三步:一是构造绘图用的数据(Matplotlib推荐numpy数据,本系列介绍Matplotlib绘图,暂不涉及numpy的相关内容,留待后续有空余时吧);二是根据数据的特点选择适当的绘图方法并绘制出数据的图形;第三步则是对绘制的图形进行自定义设置或者美化以达到满足我们获得精美的输出图形的要求。

在上面的绘图中,我们仅仅做到了第二步,下面我们来进行一些自定义,而Matplotlib为此提供了非常丰富的功能。

你可能最想先尝试一下换个颜色看看曲线是什么样的,这有很多种方法。首先,我们可以在绘制图形的时候直接指定它,我们把绘图的代码改成下面的样子:

这里的 ‘r’ 是 “red”的简写,表示将曲线的颜色指定为红色。也可以写成下面的样子,这样可读性更高:

plot 返回一个 Line2D 对象的列表,我们使用一个带有“ line1, ”的元组来解包,随后使用 set_color() 代码设置line1 曲线的颜色,请注意这里设置的颜色会覆盖 plot 绘图函数当中指定的颜色。上面三段代码各自独立运行之后的效果是一样的。如下:

为了提高效率,Matplotlib模仿MATLAB支持常用颜色的单字母代码缩写。

你还可以使用不区分大小写的十六进制 RGB 或 RGBA 字符串(如:'#0f0f0f'),或者不区分大小写的 X11/CSS4 颜色名称(如:'aquamarine'),以及来自 xkcd color survey 的不区分大小写的颜色名称(如:'xkcd:sky blue')等等。更为详细的颜色规范,你可以查阅官方文档。但对于Python办公而言,掌握这些应该已经足够了。

与曲线颜色一样,线型和线宽也有多种方式来指定:

这里我们最终指定的线宽为2.0磅,绘图函数当中指定的线宽被后续指定的属性值覆盖了。而线型在这里由set_linestyle()指定,其中“--”和“-.”都是Matplotlib中支持的线型,“--”表示虚线,而“-.”则是点划线。而Matplotlib默认的线型“-”实线,除此之外,Matplotlib还支持“:”点线。

我们绘制曲线之前构造的数据点在曲线上也可以标记出来,这些标记点有不同的风格。同样可以以不同的方式来设置它:

注意第一行代码当中的“r:o”字符串,它是一种简写形式,是将颜色、线型和标记点形状在一个字符串中同时设置的方式,其中的“r”表示红色,“:”表示点线,“o”表示标记点为大圆点。只有在颜色使用单字符代码时才可以像上面这样组合起来同时表示三个属性。默认情况下,标记点的颜色与线型颜色相同,但可以单独设置与曲线不同的颜色,不仅如此,标记点的边线颜色和中间填充颜色也都可以单独设置。上面第二行代码我们就使用set_markeredgecolor('b')将标记点边线颜色设置为了蓝色。与标记点设置相关的还有set_marker(设置标记点形状)、set_markeredgewidth(设置标记点边线宽度)、set_markerfacecolor(设置标记点中间的填充色)、set_markersize (设置标记点的大小)等。下面是我整理的Matplotlib支持的所有标记点形状。

本文先介绍到此,后续进一步介绍坐标轴、图例和网格线的设置。最后附上本文pyplot风格的绘图代码:

显然这种简单绘图pyplot风格要简洁一些,还是很有优势的。

如何让python可视化

简介

在 Python 中,将数据可视化有多种选择,正是因为这种多样性,何时选用何种方案才变得极具挑战性。本文包含了一些较为流行的工具以及如何使用它们来创建简单的条形图,我将使用下面几种工具来完成绘图示例:

Pandas

Seaborn

ggplot

Bokeh

pygal

Plotly

在示例中,我将使用 pandas 处理数据并将数据可视化。大多数案例中,使用上述工具时无需结合 pandas,但我认为 pandas 与可视化工具结合是非常普遍的现象,所以以这种方式开启本文是很棒的。

什么是 Matplotlib?

Matplotlib 是众多 Python 可视化包的鼻祖。其功能非常强大,同时也非常复杂。你可以使用 Matplotlib 去做任何你想做的事情,但是想要搞明白却并非易事。我不打算展示原生的 Matplotlib 例子,因为很多工具(特别是 Pandas 和 Seaborn)是基于 Matplotlib 的轻量级封装,如果你想了解更多关于 Matplotlib 的东西,在我的这篇文章— 《simple graphing》中有几个例子可供参考。

Matplotlib 令我最不满的地方是它花费太多工作来获得目视合理的图表,但是在本文的某些示例中,我发现无需太多代码就可以轻松获得漂亮的可视化图表。关于 Matplotlib 冗长特点的示例,可以参考这篇文章《ggplot》中的平面图示例。

方法论

简要说一下本文的方法论。我坚信只要读者开始阅读本文,他们将会指出使用这些工具的更好方法。我的目标并非在每个例子中创造出完全相同的图表,而是花费大致相同的时间探索方法,从而在每个例子中以大体相同的方法将数据可视化。

在这个过程中,我所面临的最大挑战是格式化 x 轴和 y 轴以及基于某些大的标签让数据看起来合理,弄明白每种工具是如何格式化数据的也花费了我不少精力,我搞懂这些之后,剩余的部分就相对简单了。

另外还需要注意的一点是,条形图可能是制作起来相对更简单的图表,使用这些工具可以制作出多种类型的图表,但是我的示例更加侧重的是简易的格式化,而不是创新式的可视化。另外,由于标签众多,导致一些图表占据了很多空间,所以我就擅自移除了它们,以保证文章长度可控。最后,我又调整了图片尺寸,所以图片的任何模糊现象都是缩放导致的问题,并不代表真实图像的质量。

最后一点,我以一种尝试使用 Excel 另外一款替代品的心态来实现示例。我认为我的示例在报告、展示、邮件或者静态网页中都更具说服力。如果你正在评估用于实时可视化数据的工具,亦或是通过其他途径去分享,那么其中的部分工具会提供很多我还未涉猎到的功能。

数据集

之前的文章描述了我们要处理的数据,我从每一类中抽取了更深一层的样例,并选用了更详细的元素。这份数据集包含了125行,但是为了保持简洁,我只选用了前10行,完整的数据集可以在这里找到。

Python Matplotlib画图

主要用于作图、可视化问题

pip install matplotlib

导入模块 pyplot 和 pylab ,可以参考下面链接观察两者区别:
https://www.cnblogs.com/Shoesy/p/6673947.html
(说白了就是pylay=pyplot+numpy)

输入这三行解决

主要使用 plot() 来展示,里面前两个参数代表 x , y 坐标(注意x,y数量要一样),第三个参数可以用来设置散点图( 'o' )或者颜色、线条形式等各种样式,并且第三个参数可以同时传入多个,比如要红色的散点图就: '0r'
(1)颜色样式:

(2)线条样式:

(3)点的样式:

(4)坐标区间:

或者分别设置x、y的区间:

注:
设置点的样式时默认就是散点图,以及同类样式只能设置一个(比如不能设置两种颜色),并且还可以把多个图集合在一起展示,那就多 plot 几个,plot就相当于一个画布,每plot一个就相当于在上面画一张图,再弄就继续在上面画

主要用 hist() 来显示,实现方式很简单,把一组数据放入括号里就行了,例如随机生成一堆正态分布的数,然后直方图显示:

其中如果要设置直方图格式(宽度、上下限、是否要轮廓)可以这样:

注:
直方图和折线图这些不太一样,折线图是传入两个等长数据,然后每个x、y坐标一一对应展示出来。而直方图是:第一个参数代表你传入的所有数据,第二个参数代表你传入的x轴范围,然后直方图会将第一个参数里传入的数据一个个计算在某个范围内含有的数据量,因此传入的两个参数数据不一定要等长,例如下面的例子:

结果如图:

可以看出数据被自动分配到对应的范围内上了

使用 subplot(row, col, area) :三个参数分别是行数、列数和区域,比如要将原图分成2行2列(切成4份),然后要左下角那个图就:

如果想4个图都显示就4个 subplot ,分别1、2、3、4就行了,然后在各图的subplot之后写的都是每个图的内容,现在我们试试弄一个2行,第一行两列的图片(想象下鼠标的样子),而且分别是不同的内容:

注:
labels 、 sizes 、 colors 和 explode 的长度都要一样

1.导入3D图相关模块:

2.将画图板加到3D模块里,然后加入数据即可:

3D散点图举例:

通过 imread() 读取,举例:

https://blog.csdn.net/qq_34859482/article/details/80617391

Python数据分析:可视化

本文是《数据蛙三个月强化课》的第二篇总结教程,如果想要了解 数据蛙社群 ,可以阅读 给DataFrog社群同学的学习建议 。温馨提示:如果您已经熟悉python可视化内容,大可不必再看这篇文章,或是之挑选部分文章

对于我们数据分析师来说,不仅要自己明白数据背后的含义,而且还要给老板更直观的展示数据的意义。所以,对于这项不可缺少的技能,让我们来一起学习下吧。

画图之前,我们先导入包和生成数据集

我们先看下所用的数据集

折线图是我们观察趋势常用的图形,可以看出数据随着某个变量的变化趋势,默认情况下参数 kind="line" 表示图的类型为折线图。

对于分类数据这种离散数据,需要查看数据是如何在各个类别之间分布的,这时候就可以使用柱状图。我们为每个类别画出一个柱子。此时,可以将参数 kind 设置为 bar 。

条形图就是将竖直的柱状图翻转90度得到的图形。与柱状图一样,条形图也可以有一组或多种多组数据。

水平条形图在类别名称很长的时候非常方便,因为文字是从左到右书写的,与大多数用户的阅读顺序一致,这使得我们的图形容易阅读。而柱状图在类别名称很长的时候是没有办法很好的展示的。

直方图是柱形图的特殊形式,当我们想要看数据集的分布情况时,选择直方图。直方图的变量划分至不同的范围,然后在不同的范围中统计计数。在直方图中,柱子之间的连续的,连续的柱子暗示数值上的连续。

箱线图用来展示数据集的描述统计信息,也就是[四分位数],线的上下两端表示某组数据的最大值和最小值。箱子的上下两端表示这组数据中排在前25%位置和75%位置的数值。箱中间的横线表示中位数。此时可以将参数 kind 设置为 box。

如果想要画出散点图,可以将参数 kind 设置为 scatter,同时需要指定 x 和 y。通过散点图可以探索变量之间的关系。

饼图是用面积表示一组数据的占比,此时可以将参数 kind 设置为 pie。

我们刚开始学习的同学,最基本应该明白什么数据应该用什么图形来展示,同学们来一起总结吧。

文章标题: python可视化怎么做图啊
文章地址: http://www.xdqxjxc.cn/jingdianwenzhang/155526.html

[python可视化怎么做图啊] 相关文章推荐:

    Top