欢迎访问喜蛋文章网
你的位置:首页 > 经典文章 > 文章正文

庞加莱回归是否意味着无数次的凌迟

时间: 2022-10-05 12:01:44 | 来源: 喜蛋文章网 | 编辑: admin | 阅读: 108次

庞加莱回归是否意味着无数次的凌迟

庞加莱猜想到底是什么

庞加莱是法国数学家,1854年4月29日生于南锡,1912年7月17日卒于巴黎。

庞加莱的父母亲都出身于法国的显赫世家,几代人都居住在法国东部的洛林。庞加莱从小就显出超常的智力,他智力的重要来源之一是遗传。他的双亲智力都很高,他的双亲又可追溯到他的祖父。他的祖父曾在拿破仑政权下的圣康坦部队医院供职,1817年在鲁昂定居,先后生下两个儿子,大儿子莱昂·庞加莱即为庞加莱的父亲。

庞加莱的父亲是当地一位著名医生,并任南锡大学医学院教授。他的母亲是一位善良、才华出众、很有教养的女性,一生的心血全部倾注到教育和照料孩子身上。庞加莱叔叔的两个儿子是法国政界的著名人物:雷蒙·庞加莱于1913至1920年间任法国总统;吕西·庞加莱曾任法国民众教育与美术部长,负责中等教育工作。

庞加莱的童年主要接受母亲的教育。他的超常智力使他成为早熟的儿童,不仅接受知识极为迅速,而且口才也很流利。但不幸的事发生了:五岁时患了一场白喉病、九个月后喉头坏了,致使他的思想不能顺利用口头表达出来,并成为一位体弱多病的入。尽管如此,庞加莱还是乐意玩耍游戏,喜欢跳舞。当然,剧烈的运动他是无法进行。

庞加莱特别爱好读书,读书的速度快得惊人,而且能对读过的内容迅速、准确、持久地记住。他甚至能讲出书中某件事是在第几页第几行中讲述的!庞加莱还对博物学发生过特殊的兴趣,《大洪水前的地球》一书据说给他留下了终身不忘的印象。他对自然史的兴趣也很浓,历史、地理的成绩也很优异。他在儿童时代还显露了文学才华,有的作文被老师誉为“杰作”。

庞加莱l862年进入南锡中学读书。初进校时虽然他的各科学习成绩十分优异,但并没有对数学产生特殊的兴趣。对数学的特殊兴趣大约开始于15岁,并很快就显露了非凡才能。从此,他习惯于一边散步,一边解数学难题。这种习惯一直保持终身。

1870年7月19日爆发的普法战争使得庞加莱不得不中断学业。法国被战败了,法国的许多城乡被德军洗劫一空并被德军占领。为了了解时局,他很快学会了德文。他通过亲眼看到的德军的暴行,使他成了一个炽热的爱国者。

1871年3月18日,巴黎无产者举行了武装起义,普法的反动派又很快联合起来扑灭了革命烈火,庞加莱又继续上学了。1872年庞加莱两次荣获法国公立中学生数学竞赛头等奖,从而使他于1873年被高等二科学校作第一名录取。据说,在南锡中学读书时,他的老师就誉称他为“数学巨人”。高等工科学校为了测试他的数学才能还特意设计了一套“漂亮的问题”,一方面要考出他的数学天才;另一方面也为了避免40年前伽罗瓦的教训重演。

1875年~1878年,庞加莱在高等工科学校毕业后,又在国立高等矿业学校学习工程,准备当一名工程师。但他却缺少这方面的勇气,且与他的兴趣不符。

1879年8月1日,庞加莱撰写了关于微分方程方面的博士论文,获得了博士学位。然后到卡昂大学理学院任讲师,1881年任巴黎大学教授,直到去世。这样,庞加莱一生的科学事业就和巴黎大学紧紧地联在一起了。

庞加莱的研究涉及数论、代数学、几何学、拓扑学等许多领域,最重要的工作是在分析学方面。他早期的主要工作是创立自守函数理论(1878)。他引进了富克斯群和克莱因群,构造了更一般的基本域。他利用后来以他的名字命名的级数构造了自守函数,并发现这种函数作为代数函数的单值化函数的效用。

1883年,庞加莱提出了一般的单值化定理(1907年,他和克贝相互独立地给出完全的证明)。同年,他进而研究一般解析函数论,研究了整函数的亏格及其与泰勒展开的系数或函数绝对值的增长率之间的关系,它同皮卡定理构成后来的整函数及亚纯函数理论发展的基础。他又是多复变函数论的先驱者之一。

庞加莱为了研究行星轨道和卫星轨道的稳定性问题,在1881~1886年发表的四篇关于微分方程所确定的积分曲线的论文中,创立了微分方程的定性理论。他研究了微分方程的解在四种类型的奇点(焦点、鞍点、结点、中心)附近的性态。他提出根据解对极限环(他求出的一种特殊的封闭曲线)的关系,可以判定解的稳定性。

1885年,瑞典国王奥斯卡二世设立“n体问题”奖,引起庞加莱研究天体力学问题的兴趣。他以关于当三体中的两个的质量比另一个小得多时的三体问题的周期解的论文获奖,还证明了这种限制性三体问题的周期解的数目同连续统的势一样大。这以后,他又进行了大量天体力学研究,引进了渐进展开的方法,得出严格的天体力学计算技术。

庞加莱还开创了动力系统理论,1895年证明了“庞加莱回归定理”。他在天体力学方面的另一重要结果是,在引力作用下,转动流体的形状除了已知的旋转椭球体、不等轴椭球体和环状体外,还有三种庞加莱梨形体存在。

庞加莱对数学物理和偏微分方程也有贡献。他用括去法证明了狄利克雷问题解的存在性,这一方法后来促使位势论有新发展。他还研究拉普拉斯算子的特征值问题,给出了特征值和特征函数存在性的严格证明。他在积分方程中引进复参数方法,促进了弗雷德霍姆理论的发展。

庞加莱对现代数学最重要的影响是创立组合拓扑学。1892年他发表勒第一篇论文,1895~1904年,他在六篇论文中建立了组合拓扑学。他还引进贝蒂数、挠系数和基本群等重要概念,创造流形的三角剖分、单纯复合形、重心重分、对偶复合形、复合形的关连系数矩阵等工具,借助它们推广欧拉多面体定理成为欧拉—庞加莱公式,并证明流形的同调对偶定理。

庞加莱的思想预示了德·拉姆定理和霍奇理论。他还提出庞加莱猜想,在“庞加莱的最后定理”中,他把限制性三体问题的周期解的存在问题,归结为满足某种条件的平面连续变换不动点的存在问题。

庞加莱在数论和代数学方面的工作不多,但很有影响。他的《有理数域上的代数几何学》一书开创了丢番图方程的有理解的研究。他定义了曲线的秩数,成为丢番图几何的重要研究对象。他在代数学中引进群代数并证明其分解定理。第一次引进代数中的左理想和右理想的概念。证明了李代数第三基本定理及坎贝尔—豪斯多夫公式。还引进李代数的包络代数,并对其基加以描述,证明了庞加莱—伯克霍夫—维特定理。

庞加莱对经典物理学有深入而广泛的研究,对狭义相对论的创立有贡献。他从1899年开始研究电子理论,首先认识到洛伦茨变换构成群。

庞加莱的哲学著作《科学与假设》、《科学的价值》、《科学与方法》也有着重大的影响。他是约定主义的代表人物,认为科学公理是方便的定义或约定,可以在一切可能的约定中进行选择,但需以实验事实为依据,避开一切矛盾。在数学上,他不同意罗素、希尔伯特的观点,反对无穷集合的概念,赞成潜在的无穷,认为数学最基本的直观概念是自然数,反对把自然数归结为集合论。这使他成为直觉主义的先驱者之一。

1905年,匈牙利科学院颁发一项奖金为l0000金克朗的鲍尔约奖。这个奖是要奖给在过去25年为数学发展作出过最大贡献的数学家。由于庞加莱从1879年就开始从事数学研究,并在数学的几乎整个领域都作出了杰出贡献,因而此项奖又非他莫属。

1906年,庞加莱当选为巴黎科学院主席;1908年,他被选为法国科学院院士,这是一位法国科学家所能达到的最高地位。1908年庞加莱因前列腺增大而未能前往罗马,虽经意大利外科医生作了手术,使他能继续如前一样精力充沛地工作,但好景不长。

1912年春天,庞加莱再次病倒了,7月9日作了第二次手术;7月l7日在穿衣服时,突然因血栓梗塞,在巴黎逝世,终年仅58岁!

庞加莱被公认是19世纪后四分之一和二十世纪初的领袖数学家,是对于数学和它的应用具有全面知识的最后一个人。

罗素认为,本世纪初法兰西最伟大的人物就是昂利·庞加莱。阿达马这位曾在函数论、数论、微分方程、泛函分析、微分几何、集合论、数学基础等领域作出过杰出贡献的法国数学家认为,庞加莱“整个地改变了数学科学的状况,在一切方向上打开了新的道路。”
1904年他给出了庞加莱猜想,即每个单连通的闭的可定向的三维流形同胚于三维球面,这个猜想后被推广为每个单连通的闭的n维流形,如果具有n维球S的贝蒂数和挠系数,它就同胚于S。

代数拓扑
algebraic topology

拓扑学中主要用代数工具解决问题的分支。它的前身是组合拓扑,组合拓扑的奠基人是H.庞加莱,1895年他建立了单纯同调群即可三角剖分的空间(多面体)的同调群,引进了重要的拓扑不变量贝蒂数及挠系数。J.W.亚历山大在1915年证明了贝蒂数和挠系数是同胚不变量,单纯同调群是同胚不变量。同时庞加莱还引进了复形的基本群。1904年他给出了庞加莱猜想,即每个单连通的闭的可定向的三维流形同胚于三维球面,这个猜想后被推广为每个单连通的闭的n维流形,如果具有n维球S的贝蒂数和挠系数,它就同胚于S。庞加莱猜想尚未被证明。推广了的庞加莱猜想,对于n≥5的情形,为S.斯梅尔于1961年证明,对n=4的情形,为M.H.弗里德曼于1981年所证明。庞加莱是企图利用同调群和基本群对三维流形进行同胚分类,但亚历山大在1919年指出存在不同胚的三维流形,它们有同构的同调群和基本群。20世纪20年代S.莱夫谢茨和亚历山大发展了同调论,得到了霍普夫不变量,证明了莱夫谢茨不动点定理,亚历山大对偶定理。20世纪初引进了一般空间的同调群。1932年E.切赫上同调群产生。1944年S.艾伦伯格定义了奇异同调群且用艾伦伯格- 斯廷罗德公理把各种同调群统一起来,建立了同调理论。在同伦论方面W.赫维茨定义了同伦群。J.H.C.怀特赫德把研究对象推广到CW复形。1947年N.E.斯廷罗德在障碍理论中定义了斯廷罗德平方运算。1951年 J.-P.塞尔对纤维丛引进了谱序列,在同伦群的计算方面取得不少成就。此外纽结问题也进一步发展成为思维合痕和嵌入问题。
参考资料:http://info.datang.net/D/D0347.htm
拓扑学中主要用代数工具解决问题的分支。它的前身是组合拓扑,组合拓扑的奠基人是H.庞加莱,1895年他建立了单纯同调群即可三角剖分的空间(多面体)的同调群,引进了重要的拓扑不变量贝蒂数及挠系数。J.W.亚历山大在1915年证明了贝蒂数和挠系数是同胚不变量,单纯同调群是同胚不变量。同时庞加莱还引进了复形的基本群。1904年他给出了庞加莱猜想,即每个单连通的闭的可定向的三维流形同胚于三维球面,这个猜想后被推广为每个单连通的闭的n维流形,如果具有n维球S的贝蒂数和挠系数,它就同胚于S。庞加莱猜想尚未被证明。推广了的庞加莱猜想,对于n≥5的情形,为S.斯梅尔于1961年证明,对n=4的情形,为M.H.弗里德曼于1981年所证明。庞加莱是企图利用同调群和基本群对三维流形进行同胚分类,但亚历山大在1919年指出存在不同胚的三维流形,它们有同构的同调群和基本群。20世纪20年代S.莱夫谢茨和亚历山大发展了同调论,得到了霍普夫不变量,证明了莱夫谢茨不动点定理,亚历山大对偶定理。20世纪初引进了一般空间的同调群。1932年E.切赫上同调群产生。1944年S.艾伦伯格定义了奇异同调群且用艾伦伯格- 斯廷罗德公理把各种同调群统一起来,建立了同调理论。在同伦论方面W.赫维茨定义了同伦群。J.H.C.怀特赫德把研究对象推广到CW复形。1947年N.E.斯廷罗德在障碍理论中定义了斯廷罗德平方运算。1951年 J.-P.塞尔对纤维丛引进了谱序列,在同伦群的计算方面取得不少成就。此外纽结问题也进一步发展成为思维合痕和嵌入问题。

庞加莱回归的影响

热力学第二法则的诞生轰动一时,熵的提出改变了人们的宇宙观.在这之前,人们普遍认为能是自然界的决定性因素,任何其他因素都不能违背.但是现在有了一个强有力的挑战者——熵,这一度引发了“能熵孰执牛耳”的论战.由于熵增加的不可逆转性,革命派科学家们更倾向于后者.然而正当他们为热力学第一法则让位欢呼雀跃时,庞加莱回归的提出无疑给了这些人当头一棒.

庞加莱重现的时间是10……000(一万个零)年吗?

庞加莱重现的时间是10……000(一万个零)年。

虽然物理实验结果一直支持热力学的不可逆性,但是庞加莱证明了一个定理,使得宏观不可逆性问题变得特别尖锐。这个定理的主要结论是,对于有限体积的系统,除了极少的情况下,系统必然会在经历过一段时间后回复到初始状态附近,更惊人的是,这种回复具有无限次。

庞加莱注意:

无论牛顿运动方程,还是薛定谔方程,都存在时间反演的解,这就意味着,气体的自由膨胀和自发收缩都是合理的物理过程。然而,宏观上只有自由膨胀,没有自发收缩。这是宏观热力学与微观运动学的一个尚未调和的矛盾。

宇宙的熵能可以逆转吗?庞加莱回归究竟是什么呢?

“熵”是统计学的概念,一个封闭系统的熵总是趋向于增大,也就是我们说的熵增定律;但是在物理学中,还有一个“庞加莱重现时间”。

我们把一滴墨水滴到水中,墨水会扩散开来,趋向于无序,但是无论我们如何等待,这滴墨水也不会重新聚集起来,然后和水完全分开。

在物理学中,用“熵”来描述一个系统的混乱程度,对于一个封闭系统,系统的熵总是增加或者保持不变,不可能出现降低的情况,这就是热力学中大名鼎鼎的熵增定律。

根据熵增定律,如果把我们宇宙看成一个封闭系统,那么宇宙最终会达到热寂状态,难道我们真的没有办法阻止熵的增加吗?

在1890年,法国科学家庞加莱证明了一个定理,说“力学系统经过足够长的时间后,总可以恢复到初始状态附近。”

宇宙就是一个巨大的力学系统,根据庞加莱定理,宇宙经过足够长的时间后,必定会回到宇宙开始的某个时刻,宇宙的熵自然也会回到原来的时刻;庞加莱定理看似和熵增定律矛盾,实际上两者是统一的,因为热力学定律是基于统计原理的。

比如在一个房间内,氧气和氮气总是趋向于均匀,这是由于空气分子的热运动是随机的,气体分子趋向于均匀是统计学的结果;但是我们并不能排除一种可能,就是在某一瞬间,氧气分子和氮气分子正好处于房间的两边,即便发生的概率非常非常小,但这个概率不绝对为零。

庞加莱定理就是考虑了这种特殊情况,而且证明在足够的时间上肯定会发生;在实际当中,我们都是在一个很短的时间范围内,去研究一个力学系统,那么庞加莱定理的情况,几乎是不可能发生的。

如果把庞加莱定理作用于整个宇宙,那么平均来说,宇宙首次回到最初状态的时间,就叫做”庞加莱重现时间“,这个时间非常长,大致的数量级是10^(10^(10^120))年。

宇宙中的熵能不能够逆转。我们可以把熵能比作一个封闭的空间。庞加莱回归是庞加莱认为宇宙在经过很长时间之后,必然会回到宇宙最开始的形态。
根据熵增定律,宇宙是一个封闭系统,宇宙最终会达到热寂状态,所以不能逆转,只会不断增加。而庞加莱回归则是一个猜想:系统经过很长时间后,可以恢复到初始状态附近。也就是宇宙的熵能可以逆转。
就现在的理论而言宇宙的熵能是无法逆转的,庞加莱回归是对热能转换的一个猜想,能否实现还未被证明
文章标题: 庞加莱回归是否意味着无数次的凌迟
文章地址: http://www.xdqxjxc.cn/jingdianwenzhang/152020.html

[庞加莱回归是否意味着无数次的凌迟] 相关文章推荐:

    Top